• Title/Summary/Keyword: External Wind

Search Result 524, Processing Time 0.026 seconds

Effect of building volume and opening size on fluctuating internal pressures

  • Ginger, John D.;Holmes, John D.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • v.11 no.5
    • /
    • pp.361-376
    • /
    • 2008
  • This paper considers internal pressure fluctuations for a range of building volumes and dominant wall opening areas. The study recognizes that the air flow in and out of the dominant opening in the envelope generates Helmholtz resonance, which can amplify the internal pressure fluctuations compared to the external pressure, at the opening. Numerical methods were used to estimate fluctuating standard deviation and peak (i.e. design) internal pressures from full-scale measured external pressures. The ratios of standard deviation and peak internal pressures to the external pressures at a dominant windward wall opening of area, AW are presented in terms of the non-dimensional opening size to volume parameter, $S^*=(a_s/\bar{U}_h)^2(A_W^{3/2}/V_{Ie})$ where $a_s$ is the speed of sound, $\bar{U}_h$ is the mean wind speed at the top of the building and $V_{Ie}$ is the effective internal volume. The standard deviation of internal pressure exceeds the external pressures at the opening, for $S^*$ greater than about 0.75, showing increasing amplification with increasing $S^*$. The peak internal pressure can be expected to exceed the peak external pressure at the opening by 10% to 50%, for $S^*$ greater than about 5. A dominant leeward wall opening also produces similar fluctuating internal pressure characteristics.

A Study on the Effects of Wind Load of Membrane Roof Structures according to External Form (외형에 따른 지붕 막구조물의 풍하중 영향 고찰)

  • Ko, Kwang-Woong;Jang, Myung-Ho;Lee, Jang-Bog;Sur, Sam-Yeol
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.15-18
    • /
    • 2008
  • A Spatial structure, having a curvature with a curved surface, is an extremely efficient mechanical creation considering the external load. It is resisted the out-of-plane direction load by in-plane forces using the structure's curvature. Spatial Structures include many types of structures, such as: space frames or grids; cable-and-strut and tensegrity; air-supported or air-inflated; self-erecting and deployable; cable net; tension membrane; lightweight geodesic domes; folded plates; and thin shells. Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. It is very important that effects by wind load than seismic and dead load. And, wind load is different by surrounding and shape of building In this study, we analyze the results of design wind load and wind tunnel tests about the 2 stadiums which are constructed on sensitive sites by effect of wind loads.

  • PDF

Simultaneous out-of-plane and in-plane vibration mitigations of offshore monopile wind turbines by tuned mass dampers

  • Zuo, Haoran;Bi, Kaiming;Hao, Hong
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.435-449
    • /
    • 2020
  • To effectively extract the vast wind resource, offshore wind turbines are designed with large rotor and slender tower, which makes them vulnerable to external vibration sources such as wind and wave loads. Substantial research efforts have been devoted to mitigate the unwanted vibrations of offshore wind turbines to ensure their serviceability and safety in the normal working condition. However, most previous studies investigated the vibration control of wind turbines in one direction only, i.e., either the out-of-plane or in-plane direction. In reality, wind turbines inevitably vibrate in both directions when they are subjected to the external excitations. The studies on both the in-plane and out-of-plane vibration control of wind turbines are, however, scarce. In the present study, the NREL 5 MW wind turbine is taken as an example, a detailed three-dimensional (3D) Finite Element (FE) model of the wind turbine is developed in ABAQUS. To simultaneously control the in-plane and out-of-plane vibrations induced by the combined wind and wave loads, another carefully designed (i.e., tuned) spring and dashpot are added to the perpendicular direction of each Tuned Mass Damper (TMD) system that is used to control the vibrations of the tower and blades in one particular direction. With this simple modification, a bi-directional TMD system is formed and the vibrations in both the out-of-plane and in-plane directions are simultaneously suppressed. To examine the control effectiveness, the responses of the wind turbine without control, with separate TMD system and the proposed bi-directional TMD system are calculated and compared. Numerical results show that the bi-directional TMD system can simultaneously control the out-of-plane and in-plane vibrations of the wind turbine without changing too much of the conventional design of the control system. The bi-directional control system therefore could be a cost-effective solution to mitigate the bi-directional vibrations of offshore wind turbines.

Low Speed Wind Tunnel Testing to Measure Drag with Velocity Variation on a Cube Body

  • Rahmanto, R. Hengki;Choe, Gwang-Hwan;Go, Dong-Gyun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.96-102
    • /
    • 2008
  • For centuries now, wind tunnels have been a key element in scientific research in a number of fields. Experimenting with racecars, airplanes, weather patterns, birds, and various other areas has been made much easier because of its development. In the racing field, for example, the information gathered from this testing can mean the difference between winning and losing a race. Weather simulations can also provide valuable information regarding building stability and safety. This has become very important when designing buildings today. Valuable information concerning bird flight has also been collected based on wind tunnel testing. Wind tunnels have a variety of important uses in the world today. Wind tunnel that used here is an open loop low speed wind tunnel. The fundamental principles of this tunnel is moving the air using exhaust fan In the rear side, and placing the cube in the external balance system which used to measure the working force. This experiment is using 50mm cube of finished wood. From this experiment we can get Drag Force (FD), The Reynolds Number (Re) and The Coefficient of Brae (CD).

  • PDF

Consideration of the Exterior Syndrome Caused by External Pathogen (wind-cold-dampness) (외사(外邪)(풍한습사(風寒濕邪))에 의한 외감표증(外感表證)의 발병기전(發病機轉)에 대한 소고)

  • Lee, Sang-Ryong;Lee, Chang-Hyun;Lee, Kwang-Gye
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.409-417
    • /
    • 2012
  • External pathogens such as wind, cold can easily invade the external parts of the body when host's external defense ability is not secure. Herein, we consider the underlying mechanisms against the external contraction at the body surface. During the early period after primary invasion, external defense mechanisms are gradually activated. The classic clinical manifestations are aversion to cold, fever, headache, generalized pain, and nasal congestion. This condition is called by invasion of external pathogen into the body surface. As the disease progress, lung qi is stagnated and thereby up-outward and downward movement action of lung become disturbed. Therefore, when doctor administrate formula to treat the exterior syndrome, doctor must keep in mind not only materia medica, but also underlying mechanisms through which many clinical symptoms appear.

HAZARD ANALYSIS OF TYPHOON-RELATED EXTERNAL EVENTS USING EXTREME VALUE THEORY

  • KIM, YOCHAN;JANG, SEUNG-CHEOL;LIM, TAE-JIN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.1
    • /
    • pp.59-65
    • /
    • 2015
  • Background: After the Fukushima accident, the importance of hazard analysis for extreme external events was raised. Methods: To analyze typhoon-induced hazards, which are one of the significant disasters of East Asian countries, a statistical analysis using the extreme value theory, which is a method for estimating the annual exceedance frequency of a rare event, was conducted for an estimation of the occurrence intervals or hazard levels. For the four meteorological variables, maximum wind speed, instantaneous wind speed, hourly precipitation, and daily precipitation, the parameters of the predictive extreme value theory models were estimated. Results: The 100-year return levels for each variable were predicted using the developed models and compared with previously reported values. It was also found that there exist significant long-term climate changes of wind speed and precipitation. Conclusion: A fragility analysis should be conducted to ensure the safety levels of a nuclear power plant for high levels of wind speed and precipitation, which exceed the results of a previous analysis.

An Evaluation Method for Tornado Missile Strike Probability with Stochastic Correlation

  • Eguchi, Yuzuru;Murakami, Takahiro;Hirakuchi, Hiromaru;Sugimoto, Soichiro;Hattori, Yasuo
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.395-403
    • /
    • 2017
  • An efficient evaluation method for the probability of a tornado missile strike without using the Monte Carlo method is proposed in this paper. A major part of the proposed probability evaluation is based on numerical results computed using an in-house code, Tornado-borne missile analysis code, which enables us to evaluate the liftoff and flight behaviors of unconstrained objects on the ground driven by a tornado. Using the Tornado-borne missile analysis code, we can obtain a stochastic correlation between local wind speed and flight distance of each object, and this stochastic correlation is used to evaluate the conditional strike probability, $Q_V(r)$, of a missile located at position r, where the local wind speed is V. In contrast, the annual exceedance probability of local wind speed, which can be computed using a tornado hazard analysis code, is used to derive the probability density function, p(V). Then, we finally obtain the annual probability of tornado missile strike on a structure with the convolutional integration of product of $Q_V(r)$ and p(V) over V. The evaluation method is applied to a simple problem to qualitatively confirm the validity, and to quantitatively verify the results for two extreme cases in which an object is located just in the vicinity of or far away from the structure.

Study on the P-Y Curve around the Mono-pile Foundation of Offshore Wind Turbine by Impulsive Breaking Wave Force

  • Go, Myeongjin;Kim, Namhyeong;Ko, Yongsu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2014.06a
    • /
    • pp.253-254
    • /
    • 2014
  • In offshore, various external forces such as wind force, wave force and impulsive breaking wave force act on offshore structures. Many researches about this forces are published. Kim and Cao(2008) published researche on wave force of vertical cylinder. Kim and Go(2013) performed research on the subgrade reaction by external forces. Among this forces, impulsive breaking force is more massive than other forces, especially. Therefore, the studies about impulsive breaking wave forces have been carried out. Chun and Shim(1999) analyzed dynamic behavior of cylindrical pile subjected to impulsive breaking wave force. In this study, when the impulsive breaking wave force acts on the offshore wind turbine, the subgrade reaction acting on the mono-pile of the offshore wind turbine is calculated by p-y curve. The calculation is carried out to the multi-layered.

  • PDF

Analysis of the Climate inside Multi-span Plastic Greenhouses under Different Shade Strategies and Wind Regimes

  • He, Keshi;Chen, Dayue;Sun, Lijuan;Huang, Zhenyu;Liu, Zhenglu
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.473-483
    • /
    • 2014
  • In this work, the effects of shade combination, shade height and wind regime on greenhouse climate were quantified. A two-dimensional (2-D) computational fluid dynamics (CFD) model was developed based on an 11-span plastic greenhouse in eastern China for wind almost normal to the greenhouse orientation. The model was first validated with air temperature profiles measured in a compartmentalized greenhouse cultivated with mature lettuce (Lactuca sativa L., 'Yang Shan'). Next, the model was employed to investigate the effect of shade combinations on greenhouse microclimate patterns. Simulations showed similar airflow patterns in the greenhouse under different shade combinations. The temperature pattern was a consequence of convection and radiation transfer and was not significantly influenced by shade combination. The use of shade screens reduced air velocity by $0.02-0.20m{\cdot}s^{-1}$, lowered air temperature by $0.2-0.8^{\circ}C$ and raised the humidity level by 0.9-2.0% in the greenhouse. Moreover, it improved the interior climate homogeneity. The assessment of shade performance revealed that the external shade had good cooling and homogeneity performance and thus can be recommended. Furthermore, the effects of external shade height and wind regime on greenhouse climate parameters showed that external shade screens are suitable for installation within 1 m above roof level. They also demonstrated that, under external shade conditions, greenhouse temperature was reduced relative to unshaded conditions by $1.3^{\circ}C$ under a wind speed of $0.5m{\cdot}s^{-1}$, whereas it was reduced by merely $0.5^{\circ}C$ under a wind speed of $2.0m{\cdot}s^{-1}$. Therefore, external shading is more useful during periods of low wind speed.

Wind Load Analysis of 61ton-class Container Crane using the Computation Fluid Dynamics (61ton 컨테이너 크레인의 전산유동해석을 통한 풍하중 분석)

  • Lee, Su-Hong;Lee, Seong-Wook;Han, Dong-Seop;Kim, Tae-Hyung;Han, Geun-Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2007.12a
    • /
    • pp.228-229
    • /
    • 2007
  • Container cranes are vulnerable structure to difficult weather conditions because there is no shielding facility to protect them from high wind This study carried out to analyze the wind load have an effect on container crane according to a wind direction variation The container crane for this research is a model of a 61-ton class tint used broadly in the current ports. The dimension of an external fluid field set up 500m ${\times}$ 200m. In this study, Mean wind load conformed to the 'Design Criteria of Wind Load' in 'Load Criteria of Building Structures' and an external fluid field divided in interval of 10 degrees to analyze effect according to a wind direction From there, we carried out to the computation fluid dynamic analysis using a CFX-10 Therefore as consequence of computation fluid dynamic analysis and wind velocity experiment make a comparative study, we analyzed a wind load for construction design if container crane.

  • PDF