• Title/Summary/Keyword: External Validation

Search Result 205, Processing Time 0.028 seconds

A Study on the Factors Affecting Knowledge Contribution and Knowledge Utilization in an Online Knowledge Network (온라인 지식네트워크 내에서의 지식기여 및 지식활용 활동에 영향을 미치는 요인)

  • Jung, Jae-Hwuen;Yang, Sung-Byung;Kim, Young-Gul
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.34 no.3
    • /
    • pp.1-27
    • /
    • 2009
  • Since online knowledge networks usually consist of a larger, loosely knit, and geographically distributed group of "strangers" who may not know each other very well, members may not willingly share their knowledge with others. In order to address this challenge, this study looks Into the factors that are expected to affect knowledge sharing in an online knowledge network. For empirical validation, we choose "the global network of Korean scientists and engineers (KOSEN)" as one of the best practices of online knowledge networks. By using the archival, network, and survey data, we validate two models of knowledge sharing in sequence (i.e., knowledge contribution and knowledge utilization models) and then discuss the results. The findings of this study show that individuals not only contribute but also utilize knowledge in an online knowledge network when they are structurally embedded and perceive a strong reciprocity. In the network. In addition, taking pleasure in helping is found to positively affect knowledge contribution, whereas perceiving usefulness is found to Influence knowledge utilization. Contributions of this study and future research opportunities are also discussed.

Weight Estimation of the Sea Cucumber (Stichopus japonicas) using Vision-based Volume Measurement

  • Lee, Donggil;Kim, Seonghoon;Park, Miseon;Yang, Yongsu
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.6
    • /
    • pp.2154-2161
    • /
    • 2014
  • Growth analysis and selection of sea cucumbers (Stichopus japonicas) is typically performed through length or weight measurements. However, because sea cucumbers continuously change shape depending on the external environment, weight measurement has been the preferred approach. Weight measurements require extensive time and labor, moreover it is often difficult to accurately weigh sea cucumbers because of their wet surface. The present study measured sea cucumber features, including the body length, width, and thickness, by using a vision system and regression analysis to generate $R^2$ values that were used to develop a weight estimation algorithm. The $R^2$ value between the actual volume and weight of the sea cucumbers was 0.999, which was relatively high. Evaluation of the performance of this algorithm using cross-validation showed that the root mean square error and worst-case prediction error were 1.434 g and ${\pm}5.879g$, respectively. In addition, the present study confirmed that the proposed weight estimation algorithm and single slide rail device for weight measurement can measure weights at approximately 4,500 sea cucumbers per hour.

Nonlinear modeling of shear strength of SFRC beams using linear genetic programming

  • Gandomi, A.H.;Alavi, A.H.;Yun, G.J.
    • Structural Engineering and Mechanics
    • /
    • v.38 no.1
    • /
    • pp.1-25
    • /
    • 2011
  • A new nonlinear model was developed to evaluate the shear resistance of steel fiber-reinforced concrete beams (SFRCB) using linear genetic programming (LGP). The proposed model relates the shear strength to the geometrical and mechanical properties of SFRCB. The best model was selected after developing and controlling several models with different combinations of the influencing parameters. The models were developed using a comprehensive database containing 213 test results of SFRC beams without stirrups obtained through an extensive literature review. The database includes experimental results for normal and high-strength concrete beams. To verify the applicability of the proposed model, it was employed to estimate the shear strength of a part of test results that were not included in the modeling process. The external validation of the model was further verified using several statistical criteria recommended by researchers. The contributions of the parameters affecting the shear strength were evaluated through a sensitivity analysis. The results indicate that the LGP model gives precise estimates of the shear strength of SFRCB. The prediction performance of the model is significantly better than several solutions found in the literature. The LGP-based design equation is remarkably straightforward and useful for pre-design applications.

A mathematical spatial interpolation method for the estimation of convective rainfall distribution over small watersheds

  • Zhang, Shengtang;Zhang, Jingzhou;Liu, Yin;Liu, Yuanchen
    • Environmental Engineering Research
    • /
    • v.21 no.3
    • /
    • pp.226-232
    • /
    • 2016
  • Rainfall is one of crucial factors that impact on our environment. Rainfall data is important in water resources management, flood forecasting, and designing hydraulic structures. However, it is not available in some rural watersheds without rain gauges. Thus, effective ways of interpolating the available records are needed. Despite many widely used spatial interpolation methods, few studies have investigated rainfall center characteristics. Based on the theory that the spatial distribution of convective rainfall event has a definite center with maximum rainfall, we present a mathematical interpolation method to estimate convective rainfall distribution and indicate the rainfall center location and the center rainfall volume. We apply the method to estimate three convective rainfall events in Santa Catalina Island where reliable hydrological data is available. A cross-validation technique is used to evaluate the method. The result shows that the method will suffer from high relative error in two situations: 1) when estimating the minimum rainfall and 2) when estimating an external site. For all other situations, the method's performance is reasonable and acceptable. Since the method is based on a continuous function, it can provide distributed rainfall data for distributed hydrological model sand indicate statistical characteristics of given areas via mathematical calculation.

AUTOMATIC ORTHORECTIFICATION OF AIRBORNE IMAGERY USING GPS/INS DATA

  • Jang, Jae-Dong;Kim, Young-Seup;Yoon, Hong-Joo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.684-687
    • /
    • 2006
  • Airborne imagery must be precisely orthorectified to be used as geographical information data. GPS/INS (Global Positioning System/Inertial Navigation System) and LIDAR (LIght Detection And Ranging) data were employed to automatically orthorectify airborne images. In this study, 154 frame airborne images and LIDAR vector data were acquired. LIDAR vector data were converted to raster image for employing as reference data. To derive images with constant brightness, flat field correction was applied to the whole images. The airborne images were geometrically corrected by calculating internal orientation and external orientation using GPS/INS data and then orthorectified using LIDAR digital elevation model image. The precision of orthorectified images was validated using 50 ground control points collected in arbitrary selected five images and LIDAR intensity image. In validation results, RMSE (Root Mean Square Error) was 0.365 smaller then two times of pixel spatial resolution at the surface. It is possible that the derived mosaicked airborne image by this automatic orthorectification method is employed as geographical information data.

  • PDF

A Study on the Anti-lcing Performance Evaluation and Design Guide for Weather-Tight Door of the Vessels Operating in Cold Region (빙해선박 풍우밀문의 결빙방지 성능평가 및 설계기준에 관한 연구)

  • Seo, Young-Kyo;Jung, Young-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.450-457
    • /
    • 2013
  • For the design guide of a vessel operating in cold region, numerical analysis was carried out to evaluate the weather-tight door which installed the heating cables by using ANSYS 13.0 Transient Thermal. The numerical analysis was performed by considering Advection-Diffusion equation. This study based on the experimental results of 'A study on Anti-Icing Technique for Weather-Tight Door of Ice-Strengthened Vessels'(Jeong, et al., 2011a) in KIOST. For validation of the numerical analysis results, the cold chamber experimental data measured by the heat sensors in certain location of the weather-tight door was used. The external environmental temperature which varies from $5^{\circ}C$ to $-55^{\circ}C$ was considered in numerical analysis. Also three different heating cables which have the heat capacity of 33W/m, 45W/m and 66W/m were adapted for the design parameters to be the most efficient and guidelines for anti-icing design of the weather tight door.

User Experience Validation Using the Honeycomb Model in the Requirements Development Stage

  • Kim, Neung-Hoe
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.227-231
    • /
    • 2020
  • Recently, the importance of user experience (UX) has been rapidly increasing. Its utilization is emphasized for development of systems, products, and services. User experience is widely used across industries including services, products, processes, society, and culture. Therefore, if it is unsatisfactory, it is likely to have a direct negative impact on the corresponding system, product, or service. The failure to analyze user experience causes significant damage to the project, which may lead to its failure or redevelopment; it is hence necessary to prioritize the verification of UX in the earliest stages of development. The requirements development stage, which is a preceding stage, is an appropriate stage for the verification of user experience because the identification of user needs is completed and prototypes can be implemented. In this paper, we proposed a systematic requirements development stage; it adds user experience verification activities to the requirements development stage, using the Honeycomb model, which is a widely used tool for verifying the overall UX. User experience verification was added to the existing requirements development activities, which consisted of three steps: model definition and requirements placement, discussions between external and internal stakeholders, and review by internal stakeholders. By easily validating the user experience through this systematic requirements development stage, we expect to minimize the damage to the project due to the failure of the user experience analysis and increase the possibility of success.

Analysis Method for Cable-Membrane Structures with Element Slipping (외력에 의해 요소이동이 발생되는 케이블-막 구조물의 해석 방법)

  • Kang, Joo-Won;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.5 no.4 s.18
    • /
    • pp.79-90
    • /
    • 2005
  • The purpose of this study is development of a finite element algorithm to find out the stressed condition, slipped direction and slipped dimension when some elements of cable-membrane structures are slipped from it's initially designed coordinates by external loads as wind or non uniform load and so on. In order to search the slipped behaviors of cable-membrane structures, a Arbitrarily-Lagrangian-Eulerian(ALE) finite element formulation is introduced. In these procedures, a stiffness matrix related with ALE concept is formulated and a FE analysis program for cable-membrane structures with slipped elements is developed. Various examples for cable and membrane structures are presented to verify the program's validation. The results are shown good agreement with that of existed one.

  • PDF

TRANSFER ORBIT THERMAL ANALYSIS FOR SATELLITE (위성의 전이궤도 열해석)

  • Jun, Hyoung-Yoll;Kim, Jung-Hoon;Kim, Sung-Hoon;Yang, Koon-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.227-231
    • /
    • 2007
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and has been developing by KARI for communication and ocean and meteorological observations. It will be launched by ARIANE 5. Ka-band components are installed on South panel, where single solar array wing is mounted. Radiators, embedded heat pipes, external heat pipe, insulation blankets and heaters are utilized for the thermal control of the satellite. The Ka-band payload section is divided several areas based on unit operating temperature in order to optimize radiator area and maximize heat rejection capability. Other equipment for sensors and bus are installed on North panel. The ocean and meteorological sensors are installed on optical benches on the top floor to decouple thermally from the satellite. During the transfer orbit operation, satellite will be under severe thermal environments due to low dissipation of components, satellite attitudes and LAE(Liquid Apogee Engine) firing. This paper presents temperature and heater power prediction and validation of thermal control design during transfer orbit operation.

  • PDF

Exploring Structure-Activity Relationships for the In vitro Cytotoxicity of Alkylphenols (APs) toward HeLa Cell

  • Kim, Myung-Gil;Shin, Hye-Seoung;Kim, Jae-Hyoun
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.1
    • /
    • pp.14-22
    • /
    • 2009
  • In vitro cytotoxicity of 23 alkyl phenols (APs) on human cervical cancer cell lines (HeLa) was determined using the lactate dehydrogenase (LDH) cytotoxicity assay. Two different sets of descriptors were used to construct the calibration model based on Genetic Algorithm-Multiple Linear Regression (GA-MLR) based on the experimental data. A statistically robust Structure-Activity Relationships (QSAR) model was achieved ($R^2$=95.05%, $Q^2_{LOO}$=91.23%, F=72.02 and SE= 0.046) using three Dragon descriptors based on Me (0D-Constitutional descriptor), BELp8 (2D-Burden eigenvalue descriptor) and HATS8p (3D-GETAWAY descriptor). However, external validation could not fully prove its validity of the selected QSAR in characterization of the cytotoxicity of APs towards HeLa cells. Nevertheless, the cytotoxicity profiles showed a finding that 4-n-octylphenol (4-NOP), 4-tert-octyl-phenol (4-TOP), 4-n-nonylphenol (4-NNP) had a more potent cytotoxic effect than other APs tested, inferring that increased length and molecular bulkiness of the substituent had important influence on the LDH cytotoxicity.