• 제목/요약/키워드: External Flow

검색결과 946건 처리시간 0.033초

공기와 물의 이상 자연순환 유동의 1 차원 해석 (One-Dimensional Analysis of Air-Water Two Phase Natural Circulation Flow)

  • 박래준;하광순;김재철;홍성완;김상백
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2626-2631
    • /
    • 2007
  • Air-water two phase natural circulation flow in the T-HERMES (Thermo-Hydraulic Evaluation of Reactor cooling Mechanism by External Self-induced flow)-1D experiment has been evaluated to verify and evaluate the experimental results by using the RELAP5/MOD3 computer code. The RELAP5 results have shown that an increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not effective on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. The water level is not effective on the water circulation mass flow rate. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it is not effective on the local pressure.

  • PDF

해저면에 설치된 2차원 복합해저관로 주위의 유동특성에 관한 실험적 연구 (A Study of Flow Pattern around the Two-Dimensional Dual Subsea Pipeline on Sea Bottom)

  • 나인삼;조철희;정우철;김두홍
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 추계학술대회 논문집
    • /
    • pp.122-127
    • /
    • 2001
  • As pipelines are often used to transport gas, oil, water and oil products, there are more than one pipeline installed in the offshore field. The size and space of pipelines are various depending on the design specifications. The pipelines are to be designed and installed to secure the stability to external loads during the installation and operation period. The flow patterns are very complex around the pipelines being dependent on incoming flow velocity, pipelines size and space. To investigate the flow patterns, number of experiment are conducted with visualization equipment in a circulating water channel. The flow motion and trajectory were recorded from the laser reflected particles by camera. From the experiment the flow patterns around spaced pipelines were obtained. Also pressure gradient was measured by mano-meter to estimate the hydrodynamic forces on the behind pipeline. The results show that the various sizes and spaces can be affected in the estimation of external load. The complex flow patterns and pressure gradients can be effectively used in the understanding of flow motion and pressure gradient.

  • PDF

LightGBM을 이용한 수력 펌프 유량 추정의 실험적 연구 (An Experimental Study on the Estimation Flow-rate of Venturi Pump Using LightGBM)

  • 정진범;이지환;강명철
    • 드라이브 ㆍ 컨트롤
    • /
    • 제20권4호
    • /
    • pp.123-132
    • /
    • 2023
  • In disaster situations, to facilitate rapid drainage, electric underwater pumps are installed manually. This poses a high risk of electric shock accidents due to a short circuit, and a lot of time is required for hose connection and installation of electrical devices. To solve these problems, a Venturi pump using the venturi effect without external power is used. However, Venturi pumps that operate without external power make it difficult to install flow sensors such as electric devices; consequently, it is difficult to check the real-time flow rate. This paper proposes a flow estimation logic to replace the function of the flow sensor for the venturi pump . To develop the flow estimation logic, the flow characteristics of the venturi pump, according to the operating conditions, were checked. After that, the relationship with the flow rate of the venturi pump was defined using a pressure sensor corresponding to a low-cost sensor. Finally, an analysis of the estimation error was performed using the developed flow estimation logic.

원자로용기 외벽냉각시 용기와 단열재 사이의 자연순환 이상유동에 관한 실험적 연구 (An Experimental Study on the Two-Phase Natural Circulation Flow through an Annular Gap between Reactor Vessel and Insulation under External Vessel Cooling)

  • 하광순;박래준;김환열;김상백;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1897-1902
    • /
    • 2003
  • An 1/21.6 scaled experimental facility was prepared utilizing the results of a scaling analysis to simulate the APRI400 reactor and insulation system. The behaviors of the boiling-induced two-phase natural circulation flow in the insulation gap were observed, and the liquid mass flow rates driven by natural circulation loop were measured by varying the wall heat flux, upper exit slot area and configuration. And non-heating experiments have also been performed and discussed to certify the hydraulic similarity of the heating experiments by injecting air equivalent to the steam generated in the heating experimental condition.

  • PDF

Nonlinear vibration of laminated composite plates subjected to subsonic flow and external loads

  • Norouzi, Hamed;Younesian, Davood
    • Steel and Composite Structures
    • /
    • 제22권6호
    • /
    • pp.1261-1280
    • /
    • 2016
  • We study chaotic motion in a nonlinear laminated composite plate under subsonic fluid flow and a simultaneous external load in this paper. We derive equations of motion of the plate using the von-$K{\acute{a}}rm{\acute{a}}n^{\prime}s$ hypothesis and the Hamilton's principle. Galerkin's approach is adopted as the solution method. We then conduct a divergence analysis to obtain critical velocities of the transient flow. Melnikov's integral approach is used to find the critical parameters in which chaos takes place. Effects of different parameters including the aspect ratio, plate material and the ply angle in laminates on the critical flow speed are investigated. In a parametric study, we show that how the linear and nonlinear stiffness of the plate and the load frequency and amplitude would influence the chaotic behavior of the plate.

자연순환 루프에서 이상유동 특성에 관한 예비실험 연구 (Preliminary Experimental Study on the Two-phase Flow Characteristics in a Natural Circulation Loop)

  • 김재철;하광순;박래준;홍성완;김상백
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.308-311
    • /
    • 2008
  • As a severe accident mitigation strategy in a nuclear power plant, ERVC(External Reactor Vessel Cooling) has been proposed. Under ERVC conditions, where a molten corium is relocated in a reactor vessel lower head, a natural circulation two-phase flow is driven in the annular gap between the reactor vessel wall and its insulation. This flow should be sufficient to remove the decay heat of the molten corium and maintain the integrity of the reactor vessel. Preliminary experimental study was performed to estimate the natural circulation two-phase flow. The experimental facility which is one dimensional, the half height, and the 1/238 channel area of APR1400, was prepared and the experiments were carried out to estimate the natural circulation two-phase flow with varying the parameters of the coolant inlet area, the heat rate, and the coolant inlet subcooling. In results, the periodic circulation flow was observed and the characteristics were varied from the experimental parameters. The frequency of the natural circulation flow rate increased as the wall heat flux increased.

  • PDF

수중 유속 및 유향의 동시 측정을 위한 이미지 분석 기술에 관한 연구 (Image Analysis for the Simultaneous Measurement of Underwater Flow Velocity and Direction)

  • 서동민;오상우;변성훈
    • 센서학회지
    • /
    • 제32권5호
    • /
    • pp.307-312
    • /
    • 2023
  • To measure the flow velocity and direction in the near field of an unmanned underwater vehicle, an optical measurement unit containing an image sensor and a phosphor-integrated pillar that mimics the neuromasts of a fish was constructed. To analyze pillar movement, which changes with fluid flow, fluorescence image analysis was conducted. To analyze the flow velocity, mean force analysis, which could determine the relationship between the light intensity of a fluorescence image and an external force, and length-force analysis, which could determine the distance between the center points of two fluorescence images, were employed. Additionally, angle analysis that can determine the angles at which pixels of a digital image change was selected to analyze the direction of fluid flow. The flow velocity analysis results showed a high correlation of 0.977 between the external force and the light intensity of the fluorescence image, and in the case of direction analysis, omnidirectional movement could be analyzed. Through this study, we confirmed the effectiveness of optical flow sensors equipped with phosphor-integrated pillars.

TCD를 이용한 말초성(末梢性) 구안괘사환자에 대(對)한 임상적(臨床的) 고찰(考察) (The Clinical Study on Bell's Palsy Patients with TCD Measurement)

  • 이병렬;안택원;이현
    • 대한약침학회지
    • /
    • 제6권2호
    • /
    • pp.91-104
    • /
    • 2003
  • Objective : This study was carried to make out the connection between cerebral artery blood flow velocity and ischemic theory that presumed the cause of Bell's palsy. Method : We measured cerebral artery blood flow velocity each external carotid artery, internal carotid artery, common carotid artery, siphon, superficial temporal artery by TCD to 20 patients who diagnosed as facial nerve palsy from march 2001 to July 2001 and all objectives devided two groups as palsy side. A group is right side facial nerve palsy and B group is left facial nerve palsy. Results : 1. There is no effective change of blood flow in external carotid artery either A, B group. 2. There is no effective change of blood flow in internal carotid artery either A, B group. 3. There is no effective change of blood flow in common carotid artery either A, B group. 4. There is no effective change of blood flow in siphon artery either A, B group. 5. There is no effective change of blood flow in superficial temporal artery either A, B group.

Variation in wind load and flow of a low-rise building during progressive damage scenario

  • Elshaer, Ahmed;Bitsuamlak, Girma;Abdallah, Hadil
    • Wind and Structures
    • /
    • 제28권6호
    • /
    • pp.389-404
    • /
    • 2019
  • In coastal regions, it is common to witness significant damages on low-rise buildings caused by hurricanes and other extreme wind events. These damages start at high pressure zones or weak building components, and then cascade to other building parts. The state-of-the-art in experimental and numerical aerodynamic load evaluation is to assume buildings with intact envelopes where wind acts only on the external walls and correct for internal pressure through separate aerodynamic studies. This approach fails to explain the effect of openings on (i) the external pressure, (ii) internal partition walls; and (iii) the load sharing between internal and external walls. During extreme events, non-structural components (e.g., windows, doors or rooftiles) could fail allowing the wind flow to enter the building, which can subject the internal walls to lateral loads that potentially can exceed their load capacities. Internal walls are typically designed for lower capacities compared to external walls. In the present work, an anticipated damage development scenario is modelled for a four-story building with a stepped gable roof. LES is used to examine the change in the internal and external wind flows for different level of assumed damages (starting from an intact building up to a case with failure in most windows and doors are observed). This study demonstrates that damages in non-structural components can increase the wind risk on the structural elements due to changes in the loading patterns. It also highlights the load sharing mechanisms in low rise buildings.

선택적 촉매 환원법을 위한 외부 혼합형 이유체 노즐 개발에 대한 실험적 연구 (Development of an external twin-fluid nozzle for Selective Catalytic Reduction)

  • 박정근;이충원
    • 한국분무공학회지
    • /
    • 제9권2호
    • /
    • pp.24-33
    • /
    • 2004
  • The effect of the working fluid flow conditions and nozzle geometry on the spray performance of a twin-fluid nozzle used in Selective Catalytic Reduction is investigated experimentally. The liquid pressure is varied in the range of 0.3atm to 1.5atm and the air pressure is varied from the 0.5atm to 3.0atm. relative position between liquid nozzle(internal nozzle) and air nozzle(external nozzle) tip changes front 1mm inside the air nozzle to 1mm outside the air nozzle. The orifice diameter of the air nozzle is varied with 5mm. 6mm and 7mm. Spray visualization is realized with CCD-Camera. SMD(Sauter Mean Diameter) and mean particle velocities are measured by PDPA(Phase Doppler Particle Analyzer) under various experimental conditions. The measuring point is 300mm away from the nozzle tip in the downstream spray. The experimental results are that spray angle is depended air flow rate because nozzle diameter, air pressure and nozzle tip relative positions are related air flow rate. SMD is depended air flow rate and water flow rate. Also, SMD is increased when water flow rate is bigger. SMD is decreased when Air flow rate is bigger.

  • PDF