• Title/Summary/Keyword: Extended Luenberger Observer(ELO)

Search Result 7, Processing Time 0.032 seconds

Rotor Flux Estimation of Induction Motor Using Extended Luenberger Observer (확장된 Luenberger 관측기를 이용한 유도전동기 회전자 자속추정)

  • 최연옥
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.600-604
    • /
    • 2000
  • In this paper authors proposed a new nonlinear rotor flux observer for rotor field oriented control of an induction motor which is designed based on theory of the extended Luenberger observer(ELO) one of a nonlinear state observer. The proposed rotor flux observer is derived from the 2 phase model of induction motor by the theory of ELO. The simulation results taken under the varying condition of rotor resistance and load torque show fast convergence of estimated rotor flux and high performance of IM drive system is achieved 표 experiment.

  • PDF

APPLICATION OF EXTENDED LUENBERGER OBSERVER FOR INDUCTION MOTOR CONTROL

  • Jeong, Sam-Yong;Choi, Youn-Ok;Lee, Kang-Yeon;Cho, Geum-Bae;Baek, Hyung-Lae
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.304-309
    • /
    • 1998
  • In this paper, authors introduce an application of a nonlinear rotor flux observer, known under the name of ELO(extended Luenberger Observer), for direct rotor field oriented control(DRFOC) of induction motor. ELO requires no solution of nonlinear partial differential equation for its coordinate transformation and linearization used for the nonlinear observer design. Its simulation results concerned to different level of unknown variables of load torque and rotor resistance show high accuracy on rotor flux estimation in steady state.

  • PDF

Rotor Flux Estimation of an Induction Motor using the Extended Luenberger Observer (확장된 루엔버거 관측기를 이용한 유도전동기 회전자 자속 추정)

  • 조금배;최연옥;정삼용
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.115-124
    • /
    • 2001
  • In this paper, authors propose a new nonlinear rotor flux observer for rotor field oriented control of an induction motor which is designed based on the extended Luenberger Observer theory. Extended Luenberger Observer requires minimal solution of nonlinear partial differential equation on its coordinate transformation and linearization needed on a nonlinear observer design in general. The proposed rotor flux observer is derived from the 2 phase model of induction motor on the orthogonal coordination and it has the reduce gain matrix. Simulation and experimentation were performed under the conventional indirect vector control and direct vector control with the proposed observer at different rotor resistance. Simulation results show that the convergence of the proposed observer is influenced by the chosen eigenvalues. Experimentation results on load operation show the direct vector control with the proposed observer is better than the indirect vector control to maintain the characteristics of the vector control.

  • PDF

Indirect Vector Control of Induction Motor using Nonlinear Observer (비선형 관측기에 의한 유도전동기 간접 벡터제어)

  • 정삼용;이진섭;서진연;김동휘;최연옥;조금배
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.366-370
    • /
    • 1998
  • Indirect vector control for induction motors requires the use of observers for estimation or observation of rotor flux magnitude and position. In this paper, authors discribe the induction motor vector control and introduce a nonlinear observer, named ELO(extended Luenberger Observer), without simulation results as a preliminary work for trial application. Normally, design of nonlinear observer need coordinate transfromation and linearization through solving the partial different equation. However, ELO requires minimal solution of nonlinear partial differential equation. Simulation was performed by under the enviroment of Matlab and Simulink without the proposed observer because we are still working. Simulation was performed with conventional flux observer, a dc-ac inverter by SVPWM technique, a vector controller armed with multiple PI controllers

  • PDF

The Direct Torque Control of Induction Motor for Dynamic Characteristics Improvement in a Low Speed Range (저속영역에서의 동특성 개선을 위한 유도전동기의 직접토크제어)

  • 조금배;최연옥;백형래
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.601-609
    • /
    • 2000
  • Direct torque control(DTC) of AC motor has the fast torque and flux dynamic responses even though it has very simple scheme to implement. However, DTC do not show good performance at low speed range with conventional open loop stator flux observer when stator resistance varied. Therefore, authors propose a new nonlinear stator flux observer in order to estimate the stator flux of induction motor at low speed and show its simulation results.

  • PDF

Position Control of an Electro-hydraulic Servo System with Disturbance (외란을 갖는 전기유압 서보시스템의 위치제어)

  • Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • In a hydraulic control system, since a hydraulic cylinder drives a relatively large mass of an object, an external load force acts as a disturbance on the control performance of the system. Additionally, as the hydraulic system is used for a long period, there are disturbances that occur gradually, such as a drop in supply pressure because of abrasion of the pump, oil leakage from a valve, and oil leakage from a cylinder. In this study, a state feedback controller based on a linearization technique is applied. To prevent the performance degradation of the controller from the load disturbance, an Extended Luenberger observer (ELO) is used for the Extended system. The case of using the proportional controller, which is a representative linear controller, and the result of using the controller designed in this study are compared and reviewed through simulation. Also, we propose an experimental gain-setting method for a state feedback controller that can be used at industrial sites, and examine how the stability and control performance of the system changes because of the disturbance inputs through the experimental results.

Velocity Control of an Electro-hydraulic Servo System with Integral Variable Structure Controller (적분 가변구조제어기를 갖는 전기유압 서보시스템의 속도제어)

  • Huh, J.Y.
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.52-58
    • /
    • 2021
  • The variable structure controller is designed such that in sliding mode, the system moves along the switching plane in the vicinity of the switching plane, thus it is robust because it is not affected by the parameter fluctuations of the plant. However, a controller based on a variable structure may not meet the desired performance when it is commanded to track any input or is exposed to disturbances. This study proposes a sliding mode controller that follows the IVSC (Integral Variable Structure Control) approach with ELO (Extended Luenberger observer) to solve this problem. The proposed sliding mode control is applied to the velocity control of the hydraulic motor. The sliding plane was determined by the pole placement, and the control input was designed to ensure the existence of the sliding mode. The feasibility of modeling and controller are reviewed by comparing with conventional proportional-integral control through computer simulation using MATLAB software and experimenting on the cases of significant plant parameter fluctuations and disturbances.