• 제목/요약/키워드: Expression Feature

검색결과 531건 처리시간 0.028초

적응형 결정 트리를 이용한 국소 특징 기반 표정 인식 (Local Feature Based Facial Expression Recognition Using Adaptive Decision Tree)

  • 오지훈;반유석;이인재;안충현;이상윤
    • 한국통신학회논문지
    • /
    • 제39A권2호
    • /
    • pp.92-99
    • /
    • 2014
  • 본 논문은 결정 트리(Decision tree) 구조를 기반으로 한 표정 인식 방법을 제안한다. ASM(Active Shape Model)과 LBP(Local Binary Pattern)를 통해, 표정 영상들의 국소 특징들을 추출한다. 국소 특징들로부터 표정들을 잘 분류할 수 있는 판별 특징(Discriminant feature)들을 추출하고, 그 판별 특징들은 모든 조합의 각 두 가지 표정들을 분류시킨다. 분류를 통해 얻어진 정인식의 합을 통해, 정인식 최대화 기반 국소 영역과 표정 조합을 결정한다. 이 가지 분류들을 종합하여, 결정 트리를 생성한다. 이 결정 트리 기반 표정 인식률은 약 84.7%로, 결정 트리를 고려하지 않은 방법보다, 더 좋은 인식 성능을 보였다.

얼굴 표정인식을 위한 2D-DCT 특징추출 방법 (Feature Extraction Method of 2D-DCT for Facial Expression Recognition)

  • 김동주;이상헌;손명규
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권3호
    • /
    • pp.135-138
    • /
    • 2014
  • 본 논문에서는 2D-DCT와 EHMM 알고리즘을 이용하여 과적합에 강인한 얼굴 표정인식 방법을 고안하였다. 특히, 본 논문에서는 2D-DCT 특징추출을 위한 윈도우 크기를 크게 설정하여 EHMM의 관측벡터를 추출함으로써, 표정인식 성능 향상을 도모하였다. 제안 방법의 성능평가는 공인 CK 데이터베이스와 JAFFE 데이터베이스를 이용하여 수행되었고, 실험 결과로부터 특징추출 윈도우의 크기가 커질수록 표정 인식률이 향상됨을 확인하였다. 또한, CK 데이터베이스를 이용하여 표정 모델을 생성하고 JAFFE 데이터베이스 전체 샘플을 테스트한 결과, 제안 방법은 87.79%의 높은 인식률을 보였으며, 기존의 히스토그램 특징 기반의 표정인식 접근법보다 46.01~50.05%의 향상된 인식률을 보였다.

Video Expression Recognition Method Based on Spatiotemporal Recurrent Neural Network and Feature Fusion

  • Zhou, Xuan
    • Journal of Information Processing Systems
    • /
    • 제17권2호
    • /
    • pp.337-351
    • /
    • 2021
  • Automatically recognizing facial expressions in video sequences is a challenging task because there is little direct correlation between facial features and subjective emotions in video. To overcome the problem, a video facial expression recognition method using spatiotemporal recurrent neural network and feature fusion is proposed. Firstly, the video is preprocessed. Then, the double-layer cascade structure is used to detect a face in a video image. In addition, two deep convolutional neural networks are used to extract the time-domain and airspace facial features in the video. The spatial convolutional neural network is used to extract the spatial information features from each frame of the static expression images in the video. The temporal convolutional neural network is used to extract the dynamic information features from the optical flow information from multiple frames of expression images in the video. A multiplication fusion is performed with the spatiotemporal features learned by the two deep convolutional neural networks. Finally, the fused features are input to the support vector machine to realize the facial expression classification task. The experimental results on cNTERFACE, RML, and AFEW6.0 datasets show that the recognition rates obtained by the proposed method are as high as 88.67%, 70.32%, and 63.84%, respectively. Comparative experiments show that the proposed method obtains higher recognition accuracy than other recently reported methods.

거울 투영 이미지를 이용한 3D 얼굴 표정 변화 자동 검출 및 모델링 (Automatic 3D Facial Movement Detection from Mirror-reflected Multi-Image for Facial Expression Modeling)

  • 경규민;박민용;현창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.113-115
    • /
    • 2005
  • This thesis presents a method for 3D modeling of facial expression from frontal and mirror-reflected multi-image. Since the proposed system uses only one camera, two mirrors, and simple mirror's property, it is robust, accurate and inexpensive. In addition, we can avoid the problem of synchronization between data among different cameras. Mirrors located near one's cheeks can reflect the side views of markers on one's face. To optimize our system, we must select feature points of face intimately associated with human's emotions. Therefore we refer to the FDP (Facial Definition Parameters) and FAP (Facial Animation Parameters) defined by MPEG-4 SNHC (Synlhetic/Natural Hybrid Coding). We put colorful dot markers on selected feature points of face to detect movement of facial deformation when subject makes variety expressions. Before computing the 3D coordinates of extracted facial feature points, we properly grouped these points according to relative part. This makes our matching process automatically. We experiment on about twenty koreans the subject of our experiment in their late twenties and early thirties. Finally, we verify the performance of the proposed method tv simulating an animation of 3D facial expression.

  • PDF

The Facial Expression Recognition using the Inclined Face Geometrical information

  • Zhao, Dadong;Deng, Lunman;Song, Jeong-Young
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.881-886
    • /
    • 2012
  • The paper is facial expression recognition based on the inclined face geometrical information. In facial expression recognition, mouth has a key role in expressing emotions, in this paper the features is mainly based on the shapes of mouth, followed by eyes and eyebrows. This paper makes its efforts to disperse every feature values via the weighting function and proposes method of expression classification with excellent classification effects; the final recognition model has been constructed.

  • PDF

FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원 (Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets)

  • 신영숙;이수용;이일병;정찬섭
    • 인지과학
    • /
    • 제11권2호
    • /
    • pp.53-58
    • /
    • 2000
  • 본 논문은 FCM 군집화 알고리즘을 사용하여 표정영상에서 특징점들을 추출한 후 추출된 특징점으로부터 Gabor 웨이브렛들을 이용하여 표정영상의 국소영역을 복원한다. 얼굴의 특징점 추출은 두단계로 이루어진다. 1단계는 이차원 Gabor 웨이브렛 계수 히스토그램의 평균값을 적용하여 얼굴의 주요 요소성분들의 경계선을 추출한 후, 2단계에서는 추출된 경계선 정보로부터 FCM 군집화 알고리즘을 사용하여 얼굴의 주요 요소성분들의 최종적인 특징점들을 추출한다. 본 연구에서는 FCM 군집화 알고리즘을 이용하여 추출된 적은 수의 특징점들 만으로도 표정영상의 주요 요소들을 복원할 수 있음을 제시한다. 이것은 인간의 얼굴 표정인식 뿐만아니라 물체인식에도 적용되어질 수 있다.

  • PDF

Facial Expression Recognition Method Based on Residual Masking Reconstruction Network

  • Jianing Shen;Hongmei Li
    • Journal of Information Processing Systems
    • /
    • 제19권3호
    • /
    • pp.323-333
    • /
    • 2023
  • Facial expression recognition can aid in the development of fatigue driving detection, teaching quality evaluation, and other fields. In this study, a facial expression recognition method was proposed with a residual masking reconstruction network as its backbone to achieve more efficient expression recognition and classification. The residual layer was used to acquire and capture the information features of the input image, and the masking layer was used for the weight coefficients corresponding to different information features to achieve accurate and effective image analysis for images of different sizes. To further improve the performance of expression analysis, the loss function of the model is optimized from two aspects, feature dimension and data dimension, to enhance the accurate mapping relationship between facial features and emotional labels. The simulation results show that the ROC of the proposed method was maintained above 0.9995, which can accurately distinguish different expressions. The precision was 75.98%, indicating excellent performance of the facial expression recognition model.

효과적인 얼굴 인식을 위한 특징 분포 및 적응적 인식기 (Feature Variance and Adaptive classifier for Efficient Face Recognition)

  • ;남미영;이필규
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2007년도 추계학술발표대회
    • /
    • pp.34-37
    • /
    • 2007
  • Face recognition is still a challenging problem in pattern recognition field which is affected by different factors such as facial expression, illumination, pose etc. The facial feature such as eyes, nose, and mouth constitute a complete face. Mouth feature of face is under the undesirable effect of facial expression as many factors contribute the low performance. We proposed a new approach for face recognition under facial expression applying two cascaded classifiers to improve recognition rate. All facial expression images are treated by general purpose classifier at first stage. All rejected images (applying threshold) are used for adaptation using GA for improvement in recognition rate. We apply Gabor Wavelet as a general classifier and Gabor wavelet with Genetic Algorithm for adaptation under expression variance to solve this issue. We have designed, implemented and demonstrated our proposed approach addressing this issue. FERET face image dataset have been chosen for training and testing and we have achieved a very good success.

Feature Selection via Embedded Learning Based on Tangent Space Alignment for Microarray Data

  • Ye, Xiucai;Sakurai, Tetsuya
    • Journal of Computing Science and Engineering
    • /
    • 제11권4호
    • /
    • pp.121-129
    • /
    • 2017
  • Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current target. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we propose a novel method for unsupervised feature selection, which incorporates embedded learning and $l_{2,1}-norm$ sparse regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during embedded learning to preserve the local data structure. The $l_{2,1}-norm$ sparse regression acts as a constraint to aid in learning the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite promising performance.

A Feature Vector Selection Method for Cancer Classification

  • Yun, Zheng;Keong, Kwoh-Chee
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.23-28
    • /
    • 2005
  • The high-dimensionality and insufficiency of gene expression profiles and proteomic profiles makes feature selection become a critical step in efficiently building accurate models for cancer problems based on such data sets. In this paper, we use a method, called Discrete Function Learning algorithm, to find discriminatory feature vectors based on information theory. The target feature vectors contain all or most information (in terms of entropy) of the class attribute. Two data sets are selected to validate our approach, one leukemia subtype gene expression data set and one ovarian cancer proteomic data set. The experimental results show that the our method generalizes well when applied to these insufficient and high-dimensional data sets. Furthermore, the obtained classifiers are highly understandable and accurate.

  • PDF