• 제목/요약/키워드: Exposure via inhalation

검색결과 37건 처리시간 0.024초

자일렌과 에틸벤젠에 대한 매체통합위해성평가 연구 (Aggregate Risk Assessment on Xylene and Ethylbenzene)

  • 서정관;김탁수;김필제
    • 한국환경과학회지
    • /
    • 제22권2호
    • /
    • pp.163-171
    • /
    • 2013
  • The aggregate risk assessment on xylene and ethylbenzene was carried out according to the guidance established newly in 2010 with the purpose of providing information for risk management. In human exposure assessment, the results indicated that lower ages were exposed more and that, in the interior space at home, the highest level of human exposure occurred via inhalation. At outdoor spaces, exposures via inhalation and drinking were less than 1%. In human health risk characterization, xylene showed HI(Hazard Index) < 1 in all ages. When reasonable maximum exposure(RME) was applied, HI for young children was 0.64. The HI of ethylbenzene was also below 1(0.02~0.04) in all ages, indicating no potential risk. From this study, it is considered that xylene need to be continous monitoring with interest because this substance may be more sensitive on young age group. In additon, to reduce the uncertainty of the risk assessment, the korean exposure factors on young age group such as infant, children had to be established as soon as possible.

가정에서 수돗물 사용 중에 방출되는 chloroform에 대한 흡입노출 (Inhalation Exposure to Chloroform Released from Household Uses of Chlorinated Tap Water)

  • 신혜숙;김희갑
    • 한국물환경학회지
    • /
    • 제20권2호
    • /
    • pp.120-125
    • /
    • 2004
  • Exposure to volatile disinfection by-products (DBPs) such as chloroform included in chlorinated tap water can occur during household activities via inhalation as well as ingestion and dermal absorption. This study was conducted to examine the significance of inhalation route of exposure since humans are unintentionally exposed to volatile DBPs while staying home. Two sets of experiments were carried out in an apartment to measure: 1) the variation of chloroform concentrations in the living room air following kitchen activities (cooking and dish-washing); and 2) the variation of chloroform concentrations in the bathroom and living room following showering. Cooking, dish-washing, and showering all contributed to the elevation of household chloroform levels. Even a few minutes of natural ventilation resulted in the reduction of the chloroform levels to the background. Estimates of daily chloroform doses and lifetime cancer risks suggested that inhalation of household air during staying home be a major route of exposure to chloroform and that ingestion be a minor one in Korean people. It is also suggested that ventilation be a simple and important measure of mitigating human exposure to volatile DBPs indoors.

흰쥐에 있어서 톨루엔 흡입노출이 시간경과에 따른 혈중 톨루엔농도 및 행동변화에 미치는 영향 (The Effects of Toluene Inhalation on Blood Toluene Concentration in Time Sequence and Behavioral Change in Rats)

  • 백승경;노일협
    • 약학회지
    • /
    • 제40권5호
    • /
    • pp.545-549
    • /
    • 1996
  • Male Sprague-Dawley rats were exposed to the toluene at 3,000${\pm}$200ppm via inhalation for two hours in the single inhalation group and three weeks by two hours per day, six da ys per week in the repeated inhalation group. The blood toluene concentration in the repeated inhalation group was significantly lower than that in the single inhalation group after 210 and 240 minutes of exposure. The peak concentration of blood toluene was 58.13${\pm}$4.63${\mu}$g/ml in the single inhalation group and 54.24${\pm}$6.87mcg/ml in the repeated at the end of 120 minutes of the exposure. The behavioral change of rats for the initial 30 minutes of the toluene inhalation showed mildly increased movement and excitement but remained calm and inhibitory behaviors after that period; more inhibitory behaviors in the single inhalation group compared with the repeated inhalation group. In open-field test, after the termination of the toluene inhalation, no difference had been statistically observed between the toluene inhalation group and the control group in ambulation, rearing, preening and grooming.

  • PDF

Inhalation Toxicity of Bisphenol A and Its Effect on Estrous Cycle, Spatial Learning, and Memory in Rats upon Whole-Body Exposure

  • Chung, Yong Hyun;Han, Jeong Hee;Lee, Sung-Bae;Lee, Yong-Hoon
    • Toxicological Research
    • /
    • 제33권2호
    • /
    • pp.165-171
    • /
    • 2017
  • Bisphenol A (BPA) is a monomer used in a polymerization reaction in the production of polycarbonate plastics. It has been used in many consumer products, including plastics, polyvinyl chloride, food packaging, dental sealants, and thermal receipts. However, there is little information available on the inhalation toxicity of BPA. Therefore, the aim of this study was to determine its inhalation toxicity and effects on the estrous cycle, spatial learning, and memory. Sprague-Dawley rats were exposed to 0, 10, 30, and $90mg/m^3$ BPA, 6 hr/day, 5 days/week for 8 weeks via whole-body inhalation. Mortality, clinical signs, body weight, hematology, serum chemistry, estrous cycle parameters, performance in the Morris water maze test, and organ weights, as well as gross and histopathological findings, were compared between the control and BPA exposure groups. Statistically significant changes were observed in serum chemistry and organ weights upon exposure to BPA. However, there was no BPA-related toxic effect on the body weight, food consumption, hematology, serum chemistry, organ weights, estrous cycle, performance in the Morris water maze test, or gross or histopathological lesions in any male or female rats in the BPA exposure groups. In conclusion, the results of this study suggested that the no observable adverse effect level (NOAEL) for BPA in rats is above $90mg/m^3$/6 hr/day, 5 days/week upon 8-week exposure. Furthermore, BPA did not affect the estrous cycle, spatial learning, or memory in rats.

다매체/다경로 노출을 고려한 benzo(a)pyrene의 총 인체 노출량 예측 (Estimating Human Exposure to Benzo(a)pyrene through Multimedia/Multiroute Exposure Scenario)

  • 문지영;양지연;임영욱;박성은;신동천
    • Environmental Analysis Health and Toxicology
    • /
    • 제18권4호
    • /
    • pp.255-269
    • /
    • 2003
  • The objective of this study was to estimate human exposure to benzo (a)pyrene through multimedia/multi-pathway exposure scenario. The human exposure scenario for benzo(a)pyrene was consisted of 12 multiple exposure pathways, and the multipathway human exposure model based on this scenario constituted. In this study, the multipathway human exposure model was used to estimate the concentrations in the exposure contact media, human intake factors and lifetime average daily dose (LAD $D_{model}$) of benzo(a)pyrene in the environment. Sensitivity analysis was performed to identify the important parameters and Monte-Carlo simulation was undertaken to examine the uncertainty of the model. The total LAD $D_{model}$ was estimated to be 5.52${\times}$10$^{-7}$ mg/kg-day (2.06${\times}$10$^{-7}$ -8.65${\times}$10$^{-7}$ mg/kg-day) using the multipathway human exposure model. The inhalation dose accounted for 78% of the total LADD, whereas ingestion and dermal contact intake accounted for 20.2% and 1.8% of the total exposure, respectively. Based on the sensitivity analysis, the most significant contributing input parameter was benzo (a)pyrene concentration of ambient air. Consequently, exposure via inhalation in outdoor/indoor air was the highest compared with the exposure via other medium/pathways.

다양한 위해성평가 방법에 따라 도출한 토양오염 판정기준의 차이에 관한 연구(III): 우리나라 납 오염 위해성평가 방법 제안 (Analysis on the Risk-Based Screening Levels Determined by Various Risk Assessment Tools (III): Proposed Methodology for Lead Risk Assessment in Korea)

  • 정재웅;남경필
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제20권6호
    • /
    • pp.1-7
    • /
    • 2015
  • The most critical health effect of lead exposure is the neurodevelopmental effect to children caused by the increased blood lead level. Therefore, the endpoint of the risk assessment for lead-contaminated sites should be set at the blood lead level of children. In foreign countries, the risk assessment for lead-contaminated sites is conducted by estimating the increased blood lead level of children via oral intake and/or inhalation (United States Environmental Protection Agency, USEPA), or by comparing the estimated oral dose to the threshold oral dose of lead, which is derived from the permissible blood lead level of children (Dutch National Institute for Public Health and the Environment, RIVM). For the risk assessment, USEPA employs Integrated-Exposure-Uptake-Biokinetic (IEUBK) Model to check whether the estimated portion of children whose blood lead level exceeds 10 µg/dL, threshold blood lead level determined by USEPA, is higher than 5%, while Dutch RIVM compares the estimated oral dose of lead to the threshold oral dose (2.8 µg/kg-day), which is derived from the permissible blood lead level of children. In Korea, like The Netherlands, risk assessment for lead-contaminated sites is conducted by comparing the estimated oral dose to the threshold oral dose; however, because the threshold oral dose listed in Korean risk assessment guidance is an unidentified value, it is recommended to revise the existing threshold oral dose described in Korean risk assessment guidance. And, if significant lead exposure via inhalation is suspected, it is useful to employ IEUBK Model to derive the risk posed via multimedia exposure (i.e., both oral ingestion and inhalation).

A 90-Day Inhalation Toxicity Study of Ethyl Formate in Rats

  • Lee, Mi Ju;Kim, Hyeon-Yeong
    • Toxicological Research
    • /
    • 제33권4호
    • /
    • pp.333-342
    • /
    • 2017
  • Ethyl formate, a volatile solvent, has insecticidal and fungicidal properties and is suggested as a potential fumigant for stored crop and fruit. Its primary contact route is through the respiratory tract; however, reliable repeated toxicological studies focusing on the inhalation route have not been published to date. Therefore, the present study was conducted to investigate the safety of a 90-day repeated inhalation exposure in rats. Forty male and 40 female rats were exposed to ethyl formate vapor via inhalation at concentrations of 0, 66, 330, and 1,320 ppm for 6 hr/day, 5 days a week for 13 weeks. Clinical signs, body weights, food consumption, urinalysis, hematologic parameters, serum chemistry measurements, organ weights, necropsy, and histopathological findings were compared between the control and ethyl formate-exposed groups. Locomotor activity decreased during exposure and recovered afterward in male and female rats exposed to 1,320 ppm ethyl formate. Body weight and food consumption continuously decreased in both sexes exposed to 1,320 ppm ethyl formate from week 1 or 3 compared with the control values. The increases in adrenal weight and decreases in thymus weight were noted in both sexes exposed to ethyl formate at 1,320 ppm. Degeneration, squamous metaplasia of olfactory epithelium in the nasopharyngeal tissue, or both were noted in the male and female rats at 1,320 ppm and female rats at 330 ppm ethyl formate. Taken together, our results indicate that ethyl formate-induced changes were not observed in male and female rats at 330 and 66 ppm, respectively. This indicates that exposure to ethyl formate at concentrations below 66 ppm for 90 days is relatively safe in rats. This is the first report of a full-scale repeated inhalation toxicity assessment in rats and could contribute to controlling occupational environmental hazards related to ethyl formate.

모의 실험주택 모니터링 결과를 활용한 실내공기 및 바닥먼지 중 Di(2-ethyl-hexyl) phthalate (DEHP)의 이론적 총량 비율 산출 (Calculation of the Theoretical Total Amount Ratio of Di(2-ethyl-hexyl) Phthalate in Indoor Air and Floor Dust in a Test House)

  • 천사호;이가원;김승중;정승표;강다영;김기태
    • 한국환경보건학회지
    • /
    • 제49권6호
    • /
    • pp.324-333
    • /
    • 2023
  • Background: Human exposure to phthalates in indoor environments occurs via dermal absorption, oral ingestion of indoor dust, and inhalation of indoor air. However, systematic studies to investigate the exposure rate to phthalates among the three exposure routes in indoor environments are currently limited. Objectives: A theoretical exposure ratio between inhalation and oral exposure was calculated based on the total amount of di(2-ethyl-hexyl) phthalate (DEHP) emitted into indoor air and deposited into floor dust in a test house. Methods: Flooring and wallpaper containing DEHP were installed in a test house and the concentration of DEHP in both indoor air and floor dust were monitored for five months. Based on the measured DEHP concentrations, the theoretical total amount ratio of DEHP that could be exposed through inhalation and oral ingestion was calculated. Results: Considering the period of operation in the test house, the theoretical total amount of DEHP through inhalation and oral ingestion exposures in the entire test house space was calculated to be 0.014 mg and 5.5 mg, respectively. The exposure ratio of the two routes between inhalation and oral exposure corresponding to the total DEHP amount in flooring and wallpaper was 6.0×10-7% and 2.3×10-4%, indicating that theoretical oral exposure to DEHP is approximately 380 times higher than inhalation. Conclusions: Monitoring results from a test house has shown that oral exposure is the main exposure route for DEHP in indoor environments. The experimental design employed in this study and theoretical exposure ratio obtained can be applied to investigate actual exposure to DEHP and to determine the exposure characteristics of various types of semi-volatile organic compounds.

Subacute Inhalation Toxicity of Cyclohexanone in B6C3F1 Mice

  • Lee, Yong-Hoon;Chung, Yong Hyun;Kim, Hyeon-Yeong;Shin, Seo Ho;Lee, Sang Bae
    • Toxicological Research
    • /
    • 제34권1호
    • /
    • pp.49-53
    • /
    • 2018
  • Cyclohexanone ($C_6H_{10}O$, CAS No. 108-94-1) is a colorless oily liquid obtained through the oxidation of cyclohexane or dehydrogenation of phenol. It is used in the manufacture of adhesives, sealant chemicals, agricultural chemicals, paint and coating additives, solvent, electrical and electronic products, paints and coatings, photographic supplies, film, photochemicals, and as an intermediate in nylon production. Owing to the lack of information on repeated inhalation toxicity of cyclohexaone, in this study, we aimed to characterize the subacute inhalation toxicity. B6C3F1 mice were exposed to 0, 50, 150, and 250 ppm of cyclohexanone for 6 hr/day, 5 days/week for 4 weeks via whole-body inhalation in accordance with the OECD Test Guideline 412 (subacute inhalation toxicity: 28-day study). Mortality, clinical signs, body weights, food consumption, hematology, serum biochemistry, organ weights, as well as gross and histopathological findings were evaluated between the control and exposure groups. No mortality or remarkable clinical signs were observed during the study. No adverse effects on body weight, food consumption, hematology, serum biochemistry, and organ weights, gross or histopathological lesions were observed in any male or female mice in any of the exposure groups, although some statistically significant changes were observed in organ weights. We concluded that no observable adverse effect level (NOAEL) is above 250 ppm in mice exposed to cyclohexanone for 6 hr/day for 5 days/week.

톨루엔 흡입이 뇌중 Monoamine 및 그대사물의 농도에 미치는 영향에 관한 연구 (Effects of Toluene Inhalation on The Concentrations of The Brain Monoamines and Metabolites)

  • 김대병;이종권;정경자;윤여표
    • Toxicological Research
    • /
    • 제14권4호
    • /
    • pp.495-500
    • /
    • 1998
  • The effect of acute toluene exposure on behaviour and monoamine concentrations in the various brain regions were investigated in the rat. Toluene was adminstered via inhalation to rats at concentrations of 0, 1000, 10000, 40000 ppm for 20 min. During exposure to toluene, spontaneous locomotor activity was counted. After exposure, animals were sacrificed instantly and brains were separated. Regional concentratons of brain monoamines (norepinephrine, NE; dopamine, DA; 5- hydroxytryptamine, 5-HT) and its metabolites (3,4-dihydroxyphenylacetic acid, DOPAC; homovanillic acid, HVA; 5-hydroxyindole-3-acetic acid, 5-HIAA) were determined. The changes in locomotor activity during toluene exposure depended on the toluene concentration. At 1000 ppm concentration, spontaneous locomotor activity increased initially and thereafter decreased. At higher concentrations (10000 ppm and 40000 ppm), spontaneous locomotor activity decreased and eventually ceased. A regional analysis of VA, NE, 5-HT, VOPAC, HVA, and 5-HIAA indicated a significant decrease in VA concentrations in cerebellum and striatum while NE and 5-HT concentrations were significantly increased in the cerebellum and cortex. 5-HIAA concentrations were significantly increased in all brain regions. DOPAC concentrations were significantly increased in cerebellum and cortex while decreased in striatum. These results especially indicated that metabolic conversion of DA to HVA in striatum was highly increased by toluene inhalation. However, It remains to elucidate between behavioural responses and monoamine changes.

  • PDF