• Title/Summary/Keyword: Exposure doses

Search Result 551, Processing Time 0.024 seconds

Difference in Radiation Absorbed Dose According to the Panoramic Radiographic Machines (파노라마방사선촬영기종에 따른 흡수선량 차이)

  • Choi Soon-Chul
    • Imaging Science in Dentistry
    • /
    • v.30 no.1
    • /
    • pp.11-15
    • /
    • 2000
  • Purpose: The primary objective of this study was to estimate the radiation absorbed doses in certain critical organs in the head and neck region with an Orthopos plus, a Panelipse, and a Panex-E machines. The second objective was to compare the absorbed doses between 5 inch by 12 inch and 6 inch by 12 inch image field for the Orthopos plus. Materials and Methods: Rando phantom and LiF TLD chips were used for dosimetry. The absorbed doses were measured at the thyroid gland, the submandibular gland, the parotid gland, the mouth floor, the maxillary sinus, the brain, the mandibular body, the mandibular ramus, the 2nd cervical spine and the skin over TMJ area. Results: The highest absorbed dose value was recorded at the mandibular ramus for the Orthopos plus with narrow image field. Higher absorbed dose values were recorded at the parotid gland, the mouth floor, the submandibular gland, and the 2nd cervical spine. The doses in the parotid gland were 597 μGy and 529 μGy with Orthopos plus, 638 μGy with Panelipse, and 1094μGy with Panex-E. Corresponding figures for the mandibular ramus were 2363 Gy and 1220 μGy, 248 μGy, and 118 μGy. The absorbed doses to the thyroid gland, the maxillary sinus, the brain, and the skin over TMJ were very low. Conclusion: Higher exposure values were recorded for the Orthopos plus than Panelipse and Panex-E. There was no significant differences of the absorbed doses according to the image field size.

  • PDF

A Study on Radiographical Conditions and Exposure Doses During Chest Radiography at Medical Facilities in Pusan (부산지역 의료기관의 흉부촬영 조건과 피폭선량에 관한 조사연구)

  • Jeon, Sung-Oh;Cho, Young-Ha
    • Journal of radiological science and technology
    • /
    • v.20 no.2
    • /
    • pp.49-55
    • /
    • 1997
  • This study was carried out to investigate radiographical and operating conditions of X-ray units and exposure doses to patients during chest radiography, so that the results could provide basic data used for reducing the exposure dose and for providing the diagnostic information with better quality. The conditions and exposure doses of 100 X-ray units mainly used for chest radiography were examined and also 100 radiological technologists mainly handling those apparatus at 76 medical facilities in Pusan were surveyed using a questionnaire from October 1 to December 31 in 1995. The following results were obtained from the study : 1. It was found that most units were capable of taking a high tube voltage radiography by showing 67% of the units equipped with the maximum tube voltage of 150 kV, 94% with more than 500 mA for the rating capacity and 85% with the full wave type of a signal phase. 2. For actual chest radiographical conditions, however, 80% of the units were operated at $60{\sim}100\;kVp$ and only 14% at 100 kVp and over for the high tube voltage. 3. The average exposure time was less than 0.1 second, and eighty four percent of the units adapted the X-ray tube currents ranging from 200 to 300 mA, 80% the focus-film distances between 180 and 210 cm, and 63% the focus sizes of more than 2.0 mm. 4. Most units(98%) employed additional filters made of aluminum, 75% the thickness of filters less than 2.0 mm, and only 2 units the compound filters. 5. Ortho chromatic system was only adopted in 13% of screen film system for the units, and 73% used the grid ratio at 8 : 1 for the low tube voltage during chest radiography. 6. The average exposure dose of all X-ray units during chest radiography was $371\;{\mu}Sv$ with a difference of about 16 times between the minimum to the maximum, and $386\;{\mu}Sv$ both at hospitals and at health centers, followed by $380\;{\mu}Sv$ at general hospitals and $263\;{\mu}Sv$ at university hospitals without showing any statistically significant differences. In conclusion, since patients during chest radiography at medical facilities in Pusan exposed to high levels of radiation, it is recommended that appropriate added filters and grids necessary for the high tube voltage radiography and high-speed screen systems should be adopted and used as soon as possible in order to reduce exposure dose to the patients.

  • PDF

An External Dose Assessment of Worker during RadWaste Treatment Facility Decommissioning

  • Chae, San;Park, Seungkook;Park, Jinho;Min, Sujung;Kim, Jongjin;Lee, Jinwoo
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.2
    • /
    • pp.81-87
    • /
    • 2020
  • Background: Kori unit #1 is permanently shut down after a 40-year lifetime. The Nuclear Safety and Security Commission recommends establishing initial decommissioning plans for all nuclear and radwaste treatment facilities. Therefore, the Korea Atomic Energy Research Institute (KAERI) must establish an initial and final decommissioning plan for radwaste-treatment facilities. Radiation safety assessment, which constitutes one chapter of the decommissioning plan, is important for establishing a decommissioning schedule, a strategy, and cost. It is also a critical issue for the government and public to understand. Materials and Methods: This study provides a method for assessing external radiation dose to workers during decommissioning. An external dose is calculated following each exposure scenario, decommissioning strategy, and working schedule. In this study, exposure dose is evaluated using the deterministic method. Physical characterization of the facility is obtained by both direct measurement and analysis of the drawings, and radiological characterization is analyzed using the annual report of KAERI, which measures the ambient dose every month. Results and Discussion: External doses are calculated at each stage of a decommissioning strategy and found to increase with each successive stage. The maximum external dose was evaluated to be 397.06 man-mSv when working in liquid-waste storage. To satisfy the regulations, working period and manpower must be managed. In this study, average and cumulative exposure doses were calculated for three cases, and the average exposure dose was found to be about 17 mSv/yr in all the cases. Conclusion: For the three cases presented, the average exposure dose is well below the annual maximum effective dose restriction imposed by the international and domestic regulations. Working period and manpower greatly affect the cost and entire decommissioning plan; hence, the chosen option must take account of these factors with due consideration of worker safety.

A Method for Operational Safety Assessment of a Deep Geological Repository for Spent Fuels

  • Jeong, Jongtae;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.63-74
    • /
    • 2020
  • The operational safety assessment is an important part of a safety case for the deep geological repository of spent fuels. It consists of different stages such as the identification of initiating events, event tree analysis, fault tree analysis, and evaluation of exposure doses to the public and radiation workers. This study develops a probabilistic safety assessment method for the operational safety assessment and establishes an assessment framework. For the event and fault tree analyses, we propose the advanced information management system for probabilistic safety assessment (AIMS-PSA Manager). In addition, we propose the Radiological Safety Analysis Computer (RSAC) program to evaluate exposure doses to the public and radiation workers. Furthermore, we check the applicability of the assessment framework with respect to drop accidents of a spent fuel assembly arising out of crane failure, at the surface facility of the KRS+ (KAERI Reference disposal System for SNFs). The methods and tools established through this study can be used for the development of a safety case for the KRS+ system as well as for the design modification and the operational safety assessment of the KRS+ system.

Expression Patterns of the chgH:rfp Transgene in Response to 17α-Ethinylestradiol (EE2) Exposure in Marine Medaka Oryzias dancena

  • Nam, Yoon Kwon;Cho, Young Sun;Kim, Dong Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2015
  • The functional utility of a transgenic marine medaka Oryzias dancena strain carrying the red fluorescent protein (RFP) gene driven by an endogenous choriogenin H (chgH) promoter was evaluated for its ability to detect waterborne $17{\alpha}$-ethinylestradiol (EE2), a synthetic estrogen derivative. The chgH:rfp transgenic marine medaka larvae showed an age-dependent tendency in the efficiency of EE2-mediated transgene expression, in which transgenic larvae older than 6 days post-hatching displayed a more effective response in their transgene expression to EE2 than did younger hatchlings. During experimental exposures to high concentrations of EE2 (200 to 1,000 ng/L), the transgenic responses in the hatchlings were broadly dose- and duration-dependent. With exposures using lower doses of EE2 (25, 50 and 100 ng/L), EE2-induced transgenic RFP was also observed in the transgenic larvae, although the lower doses required exposure of longer duration. Under the EE2 exposure and microscope assay conditions used in our study, transgenic marine medaka larvae exhibited a similar degree of EE2-mediated RFP phenotype expression at various salinity levels (0, 15 and 30 ppt).

Identification of Differentially Expressed Genes by TCDD in Human Bronchial Cells: Toxicogenomic Markers for Dioxin Exposure

  • Park, Chung-Mu;Jin, Kyong-Suk;Lee, Yong-Woo
    • Biomedical Science Letters
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Differentially expressed genes by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) were identified in order to evaluate them as dioxin-sensitive markers and crucial signaling molecules to understand dioxin-induced toxic mechanisms in human bronchial cells. Gene expression profiling was analyzed by cDNA microarray and ten genes were selected for further study. They were cytochrome P450, family 1, subfamily B, polypeptide 1 (CYP1B1), S100 calcium binding protein A8 (calgranulin A), S100 calcium binding protein A9 (calgranulin B), aldehyde dehydrogenase 1 family, member A3 (ALDH6) and peroxiredoxin 5 (PRDX5) in up-regulated group. Among them, CYP1B1 was used as a hallmark for dioxin and sharply increased by TCDD exposure. Down-regulated genes were IK cytokine, interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), nuclease sensitive element binding protein 1 (NSEP1), protein tyrosine phosphatase type VI A, member 1 (PTP4A1), ras oncogene family 32 (RAB32). Although up-regulated 4 genes in microarray were coincided with northern hybridization, down-regulated 5 genes showed U-shaped expression pattern which is sharply decreased at lower doses and gradually increased at higher doses. These results introduce some of TCDD-responsive genes can be sensitive markers against TCDD exposure and used as signaling cues to understand toxicity initiated by TCDD inhalation in pulmonary tissues.

Analysis of Exposure Doses and Determination of Atmospheric Diffusion Coefficients (피폭선량 해석과 대기확산계수 결정)

  • Kim, Byung-Woo;Han, Moon-Hwee;Lee, Young-Bok;Lee, Jeong-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.9 no.1
    • /
    • pp.26-32
    • /
    • 1984
  • The exposure doses by the radioactive gaseous effluents from nuclear power plants are investigated in the two cases of normal operation and hypothetical accident. Gaussian equation is adapted in the normal operation as the diffusion model of effluents for long period, which uses annual average meteorological data. But the real time models have been used in the case of accidents which analyze the changes of wind direction and speed. In this study the annual exposure doses by the normal operation of Kori unit 1 during $1977{\sim}1982$ were calculated on the basis of the atmospheric diffusion factor by the Gaussian straight line model. And the image processing technique was suggested as the effective method through the wind tunnel experiments to get the characteristic value of atmospheric diffusion coefficient required especially in the accidents of nuclear power plants.

  • PDF

Effects of Eucalyptus and Geranium on Production of IL-2 and IL-4 in Mouse Splenocytes (Eucalyptus와 geranium이 마우스 splenocytes에서 IL-2 및 IL-4 생성에 대한 효과)

  • Cha Bong Kyu;Chang Myung Woong;Jeong Young Kee;Kim Kwang Hyuk
    • Journal of Life Science
    • /
    • v.16 no.1
    • /
    • pp.162-167
    • /
    • 2006
  • Aromatherpy is the controlled use of essential oils to promote health and well-being. In this work we have investigated the effect of eucalyptus and geranium on the production of interleukin-2 (IL-2) and interleukin4 (IL-4). Mouse splenocytes were incubated with essential oils. The culture supernatants of mouse splenocytes exposed with these oils were harvested to assay IL-2 and IL-4 production. The quantitative changes of IL-2 in splenocytes culture supernatants after exposure with these oils were decreased at high doses, but increased at low doses. But its of IL-4 were increased generally at high doses of eucalyptus. In case of the exposure of geranium, its of IL-4 were dose-dependently increased. These kinds of essential oils showed the probability to improve IL-2- and IL-4-related immune responses at the optimum exposure.

Radiological Safety Assessment of Transporting Radioactive Wastes to the Gyeongju Disposal Facility in Korea

  • Jeong, Jongtae;Baik, Min Hoon;Kang, Mun Ja;Ahn, Hong-Joo;Hwang, Doo-Seong;Hong, Dae Seok;Jeong, Yong-Hwan;Kim, Kyungsu
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1368-1375
    • /
    • 2016
  • A radiological safety assessment study was performed for the transportation of low level radioactive wastes which are temporarily stored in Korea Atomic Energy Research Institute (KAERI), Daejeon, Korea. We considered two kinds of wastes: (1) operation wastes generated from the routine operation of facilities; and (2) decommissioning wastes generated from the decommissioning of a research reactor in KAERI. The important part of the radiological safety assessment is related to the exposure dose assessment for the incidentfree (normal) transportation of wastes, i.e., the radiation exposure of transport personnel, radiation workers for loading and unloading of radioactive waste drums, and the general public. The effective doses were estimated based on the detailed information on the transportation plan and on the radiological characteristics of waste packages. We also estimated radiological risks and the effective doses for the general public resulting from accidents such as an impact and a fire caused by the impact during the transportation. According to the results, the effective doses for transport personnel, radiation workers, and the general public are far below the regulatory limits. Therefore, we can secure safety from the viewpoint of radiological safety for all situations during the transportation of radioactive wastes which have been stored temporarily in KAERI.

Reconstruction of Radiation Dose Received by Diagnostic Radiologic Technologists in Korea

  • Choi, Yeongchull;Kim, Jaeyoung;Lee, Jung Jeung;Jun, Jae Kwan;Lee, Won Jin
    • Journal of Preventive Medicine and Public Health
    • /
    • v.49 no.5
    • /
    • pp.288-300
    • /
    • 2016
  • Objectives: Diagnostic medical radiation workers in Korea have been officially monitored for their occupational radiation doses since 1996. The purpose of this study was to design models for reconstructing unknown individual radiation doses to which diagnostic radiation technologists were exposed before 1996. Methods: Radiation dose reconstruction models were developed by using cross-sectional survey data and the personal badge doses of 8167 radiologic technologists. The models included calendar year and age as predictors, and the participants were grouped into six categories according to their sex and facility type. The annual doses between 1971 and 1995 for those who were employed before 1996 were estimated using these models. Results: The calendar year and age were inversely related to the estimated radiation doses in the models of all six groups. The annual median estimated doses decreased from 9.45 mSv in 1971 to 1.26 mSv in 1995, and the associated dose variation also decreased with time. The estimated median badge doses from 1996 (1.22 mSv) to 2011 (0.30 mSv) were similar to the measured doses (1.68 mSv to 0.21 mSv) for the same years. Similar results were observed for all six groups. Conclusions: The reconstruction models developed in this study may be useful for estimating historical occupational radiation doses received by medical radiologic technologists in Korea.