• 제목/요약/키워드: Exposure dose rate

검색결과 374건 처리시간 0.026초

원격강내조사용 Co-60 선원의 대체용 Ir-192 선원의 조사선량결정 및 선량 등방성조사 (Determination of Exposure Dose Rate and Isotropic Distributions of Substitute High Dose Rate Ir-192 Source for Co-60 Brachytherapy Source)

  • 최태진;원철호;김옥배;김시운;김금배;조운갑;한현수;박경배
    • 한국의학물리학회지:의학물리
    • /
    • 제9권1호
    • /
    • pp.55-64
    • /
    • 1998
  • 고선량률 원격 강내조사 선원은 전량 외국에서 수입되어 왔으며, 최근 Co-60 소선원의 공급부진으로 초기 도입시의 치료시간에 비해 4내지 5배의 시간을 조사하게 되어 대체용 선원의 개발이 크게 요구되고 있다. 이 연구는 국내 하나로 원자로의 중성자를 이용하여 $^{191}$ Ir(n,Υ)$^{192}$ Ir 핵반응을 일으켜 Ir-192 선원 2.87 Ci (밀봉 1.012 Ci)를 생산하고, 고선량률 원격 강내조사선원의 선량특성을 조사하였다. 제작선원에 대한 조사선량률은 아크릴 지지체의 중앙에 아크릴 아프리케이터를 고정하고 선원의 중심으로부터 각각 5, 10, 20 cm 거리에 전리함을 설치하여 일정시간 선원을 노출시켜 측정한 결과 6.36 $\pm$ 0.147 Rm$^2$/GBq-hr (2.350 $\pm$ 0.054 R$cm^2$/mCi-hr)을 결정하였으며, 측정오차는 1$\sigma$ 는 2.2% 였다. 계산선량은 조사선량률 상수 4.69 R$cm^2$/h-mCi 와 Ir-192 에너지 스펙트럼을 이용한 선원자체 및 철에 대한 질량흡수계수를 통해 구했으며, 실제 측정선량과 평균 3.8 % 오차범위에서 일치하였다. 선량 등방성은 선원의 측방향과 축 및 대각선방향으로 전리함을 이용하여 측정한 결과 3 % 이내 균등한 선량을 나타내었으며, 필름선량에서도 균등선량분포를 확인할 수 있었으며, Co-60 선원과 유사한 선량분포를 얻었을 수 있었다. 특히 본 연구의 선량특성조사는 강내조사선량선원 대체용의 선원개발과 선량계획 전산화의 근거가 될 것으로 믿는다.

  • PDF

CCD 카메라를 이용한 전자빔 조사량의 예측 (Estimation of Electron Dose Rate using CCD Camera)

  • 김진규;김영민;김윤중;이상희;홍기민;오상호
    • Applied Microscopy
    • /
    • 제39권1호
    • /
    • pp.79-83
    • /
    • 2009
  • We report a useful method to estimate the electron dose rate which may be a decisive factor to characterize sample properties. Even though most mircoscopes have their own exposure meters, there are several practical concerns when such exposure meters are used to measure the electron dose rate: 1) Specimen should be avoided within the entire area of exposure meter; 2) beam current has to be always recorded whenever the operation mode is changed; 3) the electron dose rate can not be calculated for the beam current beyond the detectable range. To overcome these limitations, we suggest a useful method which utilize a CCD (charge coupled device) camera which is now a popular detector to obtain the final electron micrographs. We have evaluated the CCD sensitivity using the linear relationship between electron current on the exposure meter and counter ratio on the CCD camera which are built in KBSI-HVEM (high voltage electron microscope). Applying the new method, we obtained the CCD sensitivity which are approximately 0.039 counts/$e^-$ and 1.37 counts/$e^-$ for the Top-TV and the HV-GIF CCD cameras, respectively.

On the use of flyash-lime-gypsum (FaLG) bricks in the storage facilities for low level nuclear waste

  • Sidhu, Baltej Singh;Dhaliwal, A.S.;Kahlon, K.S.;Singh, Suhkpal
    • Nuclear Engineering and Technology
    • /
    • 제54권2호
    • /
    • pp.674-680
    • /
    • 2022
  • In the present study, radiation shielding and protection ability of prepared Flyash-lime-Gypsum (FaLG) bricks has been studied in terms of energy exposure build up factors and dose parameters. The energy exposure build up factors of Flyash-lime-Gypsum (FaLG) bricks have been calculated for the energy range of 0.015 MeV-15 MeV and for penetration depth upto 40 mfp directly using a new and simplified Piecewise Linear Spline Interpolation Method (PLSIM). In this new method, the calculations of G.P fitting parameters are not required. The verification and accuracy of this new method has been checked by comparing the results of exposure build up factor for NBS concrete calculated using present method with the results obtained by using G.P fitting method. Further, the relative dose distribution and reduced exposure dose rate for various radioactive isotopes without any shielding material and with Flyash-lime-Gypsum (FaLG) bricks have been calculated in the energy range of 59.59-1332 keV. On the basis of the obtained results, it has been reported that the prepared Flyash-lime-Gypsum (FaLG) bricks possess satisfactory radiation shielding properties and can be used as environmentally safe storage facilities for low level nuclear waste.

DIFFERENTIAL EXPRESSION OF RADIATION RESPONSE GENES IN SPLEEN, LUNG, AND LIVER OF RATS FOLLOWING ACUTE OR CHRONIC RADIATION EXPOSURE

  • Jin, Hee;Jin, Yeung Bae;Lee, Ju-Woon;Kim, Jae-Kyung;Lee, Yun-Sil
    • Journal of Radiation Protection and Research
    • /
    • 제40권1호
    • /
    • pp.25-35
    • /
    • 2015
  • We analyzed the differential effects of histopathology, apoptosis and expression of radiation response genes after chronic low dose rate (LDR) and acute high dose rate (HDR) radiation exposure in spleen, lung and liver of rats. Female 6-week-old Sprague-Dawley rats were used. For chronic low-dose whole body irradiation, rats were maintained for 14 days in a $^{60}Co$ gamma ray irradiated room and received a cumulative dose of 2 Gy or 5 Gy. Rats in the acute whole body exposure group were exposed to an equal dose of radiation delivered as a single pulse ($^{137}Cs$-gamma). At 24 hours after exposure, spleen, lung and liver tissues were extracted for histopathologic examination, western blotting and RT-PCR analysis. 1. The spleen showed the most dramatic differential response to acute and chronic exposure, with the induction of substantial tissue damage by HDR but not by LDR radiation. Effects of LDR radiation on the lung were only apparent at the higher dose (5 Gy), but not at lower dose (2 Gy). In the liver, HDR and LDR exposure induced a similar damage response at both doses. RT-PCR analysis identified cyclin G1 as a LDR-responsive gene in the spleen of rats exposed to 2 Gy and 5 Gy gamma radiation and in the lung of animals irradiated with 5 Gy. 2. The effects of LDR radiation differed among lung, liver, and spleen tissues. The spleen showed the greatest differential effect between HDR and LDR. The response to LDR radiation may involve expression of cyclin G1.

Technegas 스캐닝 후 중력환기에 의한 공간선량율 측정 (The Measurement of Spatial Dose Rate by Gravity Ventilation after Technegas Scanning)

  • 김성빈;원도연
    • 한국방사선학회논문지
    • /
    • 제13권4호
    • /
    • pp.667-674
    • /
    • 2019
  • Technegas를 사용한 검사는 단순 확산 누적을 통해 폐 영상을 이미지화하기 때문에 검사를 마친 후에 검사실이 오염될 수 있다. 따라서 방사선 작업 종사자와 검사를 기다리는 환자는 technegas 흡입으로 인한 내부 피폭의 영향을 받게 된다. 이에 중력환기 전후의 시간경과에 따른 공간선량율 분포를 비교, 분석함에 따라 방사선사, 의료진, 대기 환자의 피폭선량 저감화 방법을 모색하고자 한다. 중력환기 전후 환자의 호흡기 위치에서 거리별, 각도별로 공간선량율을 10분 동안 측정하고 평균값, 표준 편차 및 감소율을 계산하였다. 실험 결과, 중력 환기 전후 감소율은 최고 95.31%였고 가장 높은 감소율은 1 ~ 3분 사이에서 나타났다. 중력환기를 통해서 방사선 작업종사자, 대기환자, 환자 보호자 및 간호사의 피폭선량을 감소시킬 수 있다. 결론적으로 중력환기를 통한 피폭선량 감소 결과는 방호 최적화를 이루는 역할을 할 것이며 ICRP 103에서 권고한 의료 피폭 저감화에 부합된다.

Conclusions and Suggestions on Low-Dose and Low-Dose Rate Radiation Risk Estimation Methodology

  • Sakai, Kazuo;Yamada, Yutaka;Yoshida, Kazuo;Yoshinaga, Shinji;Sato, Kaoru;Ogata, Hiromitsu;Iwasaki, Toshiyasu;Kudo, Shin'ichi;Asada, Yasuki;Kawaguchi, Isao;Haeno, Hiroshi;Sasaki, Michiya
    • Journal of Radiation Protection and Research
    • /
    • 제46권1호
    • /
    • pp.14-23
    • /
    • 2021
  • Background: For radiological protection and control, the International Commission on Radiological Protection (ICRP) provides the nominal risk coefficients related to radiation exposure, which can be extrapolated using the excess relative risk and excess absolute risk obtained from the Life Span Study of atomic bomb survivors in Hiroshima and Nagasaki with the dose and dose-rate effectiveness factor (DDREF). Materials and Methods: Since it is impossible to directly estimate the radiation risk at doses less than approximately 100 mSv only from epidemiological knowledge and data, support from radiation biology is absolutely imperative, and thus, several national and international bodies have advocated the importance of bridging knowledge between biology and epidemiology. Because of the accident at the Tokyo Electric Power Company (TEPCO)'s Fukushima Daiichi Nuclear Power Station in 2011, the exposure of the public to radiation has become a major concern and it was considered that the estimation of radiation risk should be more realistic to cope with the prevailing radiation exposure situation. Results and Discussion: To discuss the issues from wide aspects related to radiological protection, and to realize bridging knowledge between biology and epidemiology, we have established a research group to develop low-dose and low-dose-rate radiation risk estimation methodology, with the permission of the Japan Health Physics Society. Conclusion: The aim of the research group was to clarify the current situation and issues related to the risk estimation of low-dose and low-dose-rate radiation exposure from the viewpoints of different research fields, such as epidemiology, biology, modeling, and dosimetry, to identify a future strategy and roadmap to elucidate a more realistic estimation of risk against low-dose and low-dose-rate radiation exposure.

엑스선의 조사시간에 따른 형광유리선량계의 빌드업 특성 (Buildup Characteristics of Radiophotoluminescent Glass Dosimeters with Exposure Time of X-ray)

  • 권대철
    • 대한의용생체공학회:의공학회지
    • /
    • 제38권5호
    • /
    • pp.256-263
    • /
    • 2017
  • By using the buildup characteristics of the radiophotoluminescence glass dosimeter(RPLGD), it is aimed to help the measurement of the accurate dose by measuring the radiation dose according to the time of the glass element. Five glass elements were arranged on the table and the source to image receptor distance(SID) was set to 100 cm for the build-up radiation dose measurement of the fluorescent glass dosimeter glass element(GD-352M). Radiation doses and saturation rates were measured over time according to irradiation time, with the tube voltage (30, 60, 90 kVp) and tube current (50, 100 mAs) Repeatability test was repeated ten times to measure the coefficient of variation. The radiation dose increased from 0.182 mGy to 12.902 mGy and the saturation rate increased from 58.3% with increasing exposure condition and time. The coefficient of variation of the glass elements of the fluorescent glass dosimeter was ranged from 0.2 to 0.77 according to the X - ray exposure conditions. X - ray exposure showed that the radiation dose and saturation rate were increased with buildup characteristics, and degeneration of glass elements was not observed. The reproducibility of the variation coefficient of the radiation generator was included within the error range and the reproducibility of the radiation dose was excellent.

Evaluation of Exposure Dose and Working Hours for Near Surface Disposal Facility

  • Yeseul Cho;Hoseog Dho;Hyungoo Kang;Chunhyung Cho
    • 방사성폐기물학회지
    • /
    • 제20권4호
    • /
    • pp.511-521
    • /
    • 2022
  • Decommissioning of nuclear power plants generates a large amount of radioactive waste in a short period. Moreover, Radioactive waste has various forms including a large volumes of metal, concrete, and solid waste. The disposal of decommissioning waste using 200 L drums is inefficient in terms of economics, work efficiency, and radiation safety. Therefore, The Korea Radioactive Waste Agency is developing large containers for the packaging, transportation, and disposal of decommissioning waste. Assessing disposability considering the characteristics of the radioactive waste and facility, convenience of operation, and safety of workers is necessary. In this study, the exposure dose rate of workers during the disposal of new containers was evaluated using Monte Carlo N-Particle Transport code. Six normal and four abnormal scenarios were derived for the assessment of the dose rate in a near surface disposal facility operation. The results showed that the calculated dose rates in all normal scenarios were lower than the direct exposure dose limitation of workers in the safety analysis report. In abnormal scenarios, the work hours with dose rates below 20 mSv·y-1 were calculated. The results of this study will be useful in establishing the optimal radiation work conditions.

문 개폐 여부와 차폐체 설치 유무에 따른 공간산란선량 측정 : X선 촬영 시 피폭선량 감소방안에 대한 연구 (Measurement of the Spatial Scattering Dose by Opening, Closing Door and Installing Shielding : A Study on the Reduction of Exposure Dose in Radiography)

  • 윤홍주;이용기;이인자
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제42권6호
    • /
    • pp.477-482
    • /
    • 2019
  • Recently, due to the increased use of medical radiation, the radiation exposure of radiation workers should be considered as well as medical exposure of patients. And it is recommended to close the door during radiography. however, In this study, when the door was inevitably opened for radiography, the proposed method was to install the shield as a method of reducing the exposure dose. And its efficiency was analyzed. In simple chest radiography, the measurement point was changed according to the measurement location. Dose rate were measured 10 times for each condition using a dosimeter. And the average value was derived. Using this, the change of dose according to the opening and closing of the door and the installation of the shield was analyzed. Using this, we compared and analyzed the dose change according to the door opening and closing and the installation of the shield, and significance was verified through the SPSS ver. 24. Depending on whether the door was opened or closed, 11,215.35%, 159.0%, 101.9% increased in front of the door in the consol room, behind the wall and behind the lead glass. Depending on the installing of the shield, the 49.2%, 29.6%, 19.9%, 30.6% decrease in front of the door in the examination and consol room, behind the wall and lead glass. In addition, statistical analysis was showed that there were significant differences in both the results according to whether the door was opened or closed and shielding(p<.05). Close the door during radiography. However, when the door should be opened, it was confirmed that the dose rate were reduced by installing the shield. Therefore, to optimize radiation protection, it is recommended to install shields when opening the door.

Analysis of Trends in Dose through Evaluation of Spatial Dose Rate and Surface Contamination in Radiation-Controlled Area and Personal Exposed Dose of Radiation Worker at the Korea Institute of Radiological and Medical Sciences (KIRAMS)

  • Lee, Bu Hyung;Kim, Sung Ho;Kwon, Soo Il;Kim, Jae Seok;Kim, Gi-sub;Park, Min Seok;Park, Seungwoo;Jung, Haijo
    • 한국의학물리학회지:의학물리
    • /
    • 제27권3호
    • /
    • pp.146-155
    • /
    • 2016
  • As the probability of exposure to radiation increases due to an increase in the use of radioisotopes and radiation generators, the importance of a radiation safety management field is being highlighted. We intend to help radiation workers with exposure management by identifying the degree of radiation exposure and contamination to determine an efficient method of radiation safety management. The personal exposure doses of the radiation workers at the Korea Institute of Radiological & Medical Sciences measured every quarter during a five-year period from Jan. 1, 2011 till Dec. 31, 2015 were analyzed using a TLD (thermoluminescence dosimeter). The spatial dose rates of radiation-controlled areas were measured using a portable radioscope, and the level of surface contamination was measured at weekly intervals using a piece of smear paper and a low background alpha/beta counter. Though the averages of the depth doses and the surface doses in 2012 increased from those in 2011 by about 14%, the averages were shown to have decreased every year after that. The exposure dose of 27 mSv in 2012 increased from that in 2011 in radiopharmaceutical laboratories and, in the case of the spatial dose rate, the rate of decrease in 2012 was shown to be similar to the annual trend of the whole institute. In the case of the surface contamination level, as the remaining radiation-controlled area with the exception of the I-131 treatment ward showed a low value less than $1.0kBq/m^2$, the annual trend of the I-131 treatment ward was shown to be similar to that of the entire institute. In conclusion, continuous attention should be paid to dose monitoring of the radiation-controlled areas where unsealed sources are handled and the workers therein.