• Title/Summary/Keyword: Exposure Limit

Search Result 559, Processing Time 0.035 seconds

Electrochemical Determination of Ag(I) Ion at Chemically Modified Carbon-Paste Electrode Containing 1,5,9,13-Tetrathiacyclohexadecane (1,5,9,13-Tetrathiacyclohexadecane 수식전극을 사용한 Ag(I)의 전기화학적 정량)

  • Ha, Kwang Soo;Jang, Mi-Kyeong;Seo, Moo Lyong
    • Analytical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.187-195
    • /
    • 1997
  • Chemically modified electrodes(CMEs) for Ag(I) were constructed by incoporating 1,5,9,13-tetrathiacyclohexadecane([16]-ane-$S_4$) with a conventional carbon-paste mixture composed of graphite powder and nujol oil. Ag(I) ion was chemically deposited onto the surface of the modified electrode with [16]-ane-$S_4$ by immersion of the electrode in the acetate buffer solution(pH=4.5) containing $5.0{\times}10^{-4}M$ Ag(I) ion. And then the electrode deposited with Ag(I) was reduced at -0.3V vs. S.C.E. Well-defined stripping voltammetric peaks could be obtained by scanning the potential to the positive direction. The CME surface was regenerated with exposure to 0.1M $HNO_3$ solution and was reused for the determination of Ag(I) ion. When deposition/measurement/regeneration cycles were 10 times, the response could be reproduced with relative standard deviation of 6.08%. In case of differential pulse stripping voltammetry, the calibration curve for Ag(I) was linear over the range of $5.0{\times}10^{-7}{\sim}1.5{\times}10^{-6}M$. And the detection limit was $2.0{\times}10^{-7}M$. Various ions such as Cd(II), Ni(II), Pb(II), Zn(II), Mn(II), Mg(II), EDTA, and oxalate(II) did not influence the determination of Ag(I) ion, except Cu(II) ion.

  • PDF

A Study on the Crops Pollution with Heavy Metal (농작물중(農作物中) 중금속오염도(重金屬汚染度)와 1일섭취량(日攝取量) 및 허용기준설정(許容基準設定)에 관(關)한 연구(硏究))

  • Yum, Yong-Tae;Bae, Eun-Sang;Yun, Bae-Joung
    • Journal of Preventive Medicine and Public Health
    • /
    • v.13 no.1
    • /
    • pp.3-12
    • /
    • 1980
  • Certain heavy metals which may lead peoples to poisonous status are widely used in industry and their uses have been increasing along with rapid industrialization of this country. Such an increasement of metal uses aggravates the status of environmental pollution affecting foodstuffs which are the most important life supporting factor of animal and humanbeing. Concerning the safety measures to minimize food-borne transmission of such hazardous metals, surveillance is the backbone of them and probably more so with a potential problem such as intoxication. Theoretically, this surveillance should include the determination of levels of heavy metal toxicants in foods, the determination of food consumption patterns and typical total diet, and the estimation of total load of the metal contaminant from all sources of exposure including air, water, and occupational sources. In recent year, actually, such estimates on the total daily intake of some heavy metals from foods have been made in several developed countries and a wide variation of date by season, locality, and research method was recognized. Also in this country, this kind of research data is vitally needed to make up for the serious shortage or lack of references to estimate the total amount of heavy metal intake of the people. In this study, a modification model for estimation of the total daily intake of cadmium copper, nickel, zinc, and lead through foods was applied and concentrations of the above metals in crops cultivated in this country were measured with atomic absorption spectro photometer to get the following results. 1. Level of heavy metal concentration in crops Generally, the levels of such metals in essential crops such as rice, cucumber, radish. chinese cabbage, apple, pear, grape, and orange are similar or lower than those in Japan and other developed countries. By the way, a striking result on cadmium concentration was increasement of its concentration in rice from $0{\sim}0.035ppm$ in 1970 to 0.11ppm in this study. However, the value is still far below the. Japanese Permissible Lebel of 1.0ppm. 2. Estimation of total daily intake per capita from foods A new model for estimation was devised utilizing levels of metal concentration in foods, amount of food consumed, and other food factors. Based on the above method, the daily intake of cadmium was estimated to be $70.53{\mu}g/man/day$ in average which was as high as the Limit Value of ILO/WHO(up to $71.4{\mu}g/man/day$). Also, 3.89mg of Zinc, 1.65mg of cuppor, 0.32mg of lead were given as the total daily intake per capita by this research. 3. Efficacy of washing or skinning to decrease the amount of metals in crops After washing the crops sufficiently with commercial linear alkylate sulfonate, the concentration of heavy metals could be reduced to $50{\sim}80%$ showing decreasement rate of $20{\sim}50%$. Also, after skinning the fruits, decreasement rate of the heavy metal concentration shelved $0{\sim}50%$.

  • PDF

NATURAL ATTENUATION OF HAZARDOUS INORGANIC COMPONENTS: GEOCHEMISTRY PROSPECTIVE (유해 무기질의 자연정화 : 지화학적 고찰)

  • Lee, Suk-Young;Lee, Chae-Young;Yun, Jun-Ki
    • Proceedings of the KSEEG Conference
    • /
    • 2002.06a
    • /
    • pp.81-100
    • /
    • 2002
  • While most of regulatory communities in abroad recognize ' 'natural attenuation " to include degradation, dispersion, dilution, sorption (including precipitation and transformation), and volatilization as governing Processes, regulators prefer "degradation" because this mechanism destroys the contaminant of concern. Unfortunately, true degradation only applies to organic contaminants and short- lived radionuclides, and leaves most metals and long-lived radionuclides. The natural attenuation Processes may reduce the potential risk Posed by site contaminants in three ways: (i)contaminants could be converted to a less toxic form througy destructive processes such as biodegradation or abiotic transformations; (ii) potential exposure levels may be reduced by lowering concentrations (dilution and dispersion); and (iii) contaminant mobility and bioavailability may be reduced by sorption to geomedia. In this review, authors will focus will focul on "sorption" among the natural attenuation processes of hazardous inorganic contaminants including radionuclides. Note though that sorption and transformation processes of inorganic contaminants in the natural setting could be influenced by biotic activities but our discussion would limit only to geochemical reactions involved in the natural attenuation. All of the geochemical reactions have been studied in-depth by numerous researchers for many years to understand "retardation" process of contaminants in the geomedia. The most common approach for estimating retardation is the determination of distrubution coefficiendts ($K_{d}$) of contaminants using parametric or mechanistic models. As typocally used in fate and contaminant transport calculations such as predictive models of the natural attenuation, the $K_{d}$ is defined as the ratio of the contaminant concentration in the surrounding aqueous solution when the system is at equilibrium. Unfortunately, generic or default $K_{d}$ values can result in significant error when used to predict contaminant migration rate and to select a site remediation alternative. Thus, to input the best $K_{d}$ value in the contaminant transport model, it is essential that important geochemical processes affecting the transport should be identified and understood. Precipitation/dissolution and adsorption/desorption are considered the most important geochemical processes affecting the interaction of inorganic and radionuclide contaminants with geomedia at the near and far field, respectively. Most of contaminants to be discussed in this presentation are relatively immobile, i.e., have very high $K_{d}$ values under natural geochemical environments. Unfortunately, the obvious containment in a source area may not be good enough to qualify as monitored natural attenuation site unless owner demonstrate the efficacy if institutional controls that were put in place to protect potential receptors. In this view, natural attenuation as a remedial alternative for some of sites contaminated by hazardous-inorganic components is regulatory and public acceptance issues rather than scientific issue.

  • PDF

Hazards of Chloroprene and the Workplace Management (클로로프렌의 유해성과 작업환경 관리)

  • Kim, Hyeon-Yeong;Lim, Cheol-Hong
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.3
    • /
    • pp.1-8
    • /
    • 2015
  • In this study, we performed risk assessment of chloroprene by hazard evaluation and workplace investigation. The chemical is used to manufacture of shoes, tires, adhesives, and classified as IARC category 2B (possibly carcinogenic to humans) and target organ systemic toxicity. It is used about 1,300 tons per year in 27 sites. It was calculated the risk of carcinogenesis with chloroprene by Monte-carlo simulation that the averages are 2,199 and 26,404 in each case of working less than 15 minutes per day with local exhaust ventilation and over 4 hours per day without local exhaust ventilation. The risk of target organ systemic toxicity are 4.10 and 169.06 with high correlation with working time to be longer and with ventilation system. Therefore, it is recommended that the local exhaust ventilation and respirators to prevent occupational cancer and target organ systemic toxicity with chloroprene. Especially it is determined that there is a need to strengthen the workplace exposure limit (TWA 10 ppm) in Korea since it is managed with TWA less than 5 ppm ($18mg/m^3$) by the United States Occupational Safety and Health Administration (OSHA) as well as it has carcinogenicity, reproductive toxicity.

Exposure Assessment of Total Aflatoxin in Foods (식품중 총 아플라톡신의 노출량 평가)

  • Suh, Jung-Hyuk;Sho, You-Sub;Park, Seong-Soo;Choi, Woo-Jeong;Lee, Jong-Ok;Kim, Hee-Yun;Woo, Gun-Jo;Oh, Keum-Soon
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.25-28
    • /
    • 2007
  • A survey of total aflatoxin levels was conducted on 565 food samples (cereals, nuts, etc) collected in commercial markets. The determination of aflatoxins ($B_{1}$, $B_{2}$, $G_{1}$ and $G_{2}$) was performed using HPLC with fluorescence detector. The Limit of Detections (LODs) of the B group and G group were 0.05 ng/g and 0.07 ng/g, respectively. In addition, recoveries of rice, peanut butter, and red pepper flour were satisfactory. Total aflatoxin was detected 27 samples(4.8%) out of 565 samples. Incidence ratios in cereals, nuts, processed products, and other foods were 0.2, 0.4, 3.0 and 1.2%, respectively, but aflatoxin was not detected in pulse and dried fruits. The daily intake of total aflatoxin using food intakes was 0.04 ng/kg bw/day.

FMEA of Electrostatic Precipitator for Preventive Maintenance (전기집진기 예지보전 단계에서의 고장모드영향분석)

  • Han, Seung-Hun;Lee, Jeong-Uk;Lee, Sun-Youp;Hwang, Jong-Deok;Kang, Dae-Kon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.6
    • /
    • pp.706-714
    • /
    • 2020
  • Currently, 90 % of the world's population breathes air with a fine dust content exceeding the World Health Organization's annual average exposure limit (10 ㎍/㎥). Global efforts have been devoted toward reducing secondary pollutants and ultra-fine dust through regulations on nitrogen oxides released over land and sea. Domestic efforts have also aimed at creating clean marine environments by reducing sulfur emissions, which are the primary cause of dust accumulation in ships, through developing and distributing environment-friendly ships. Among the technologies for reducing harmful emissions from diesel engines, electrostatic precipitator offer several advantages such as a low pressure loss, high dust collection efficiency, and NOx removal and maintenance. This study aims to increase the durability of a ship by improving equipment quality through failure mode effects analysis for the preventive maintenance of an electrostatic precipitator that was developed for reducing fine dust particles emitted from the 2,427 kW marine diesel engines in ships with a gross tonnage of 999 tons. With regard to risk priority, failure mode 241 (poor dust capture efficiency) was the highest, with an RPN of 180. It was necessary to determine the high-risk failure mode in the collecting electrode and manage it intensively. This was caused by clearance defects, owing to vibrations and consequent pin loosening. Given that pin loosening is mainly caused by vibrations generated in the hull or equipment, it is necessary to manage the position of pin loosening.

Summer Algal Communities in the Rocky Shore of South Sea of Korea -II. Subtidal communities- (남해의 하계 해조군집 -II. 조하대의 군집-)

  • KANG Rae-Seon;JE Jong-Geel;SOHN Chul-Hyun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.182-197
    • /
    • 1993
  • Algal community on the subtidal rocky zone of the South Sea of Korea was divided into two or three sequencing zones. The upper subtidal zone was characterized by the wave exposure-tolerant surf wrack(Pachymeniopsis, Gigartina), which formed dense swirling carpet. Its vertical range was from the surface to $3{\sim}5$ meters in depth, and more deeply extended in turbid waters including Sorido, Yokchido, Pijindo, Manjedo. The mid subtidal zone ranging from 5 to 25 meters in depth was characterized by a large brown algal forest (Ecklenia, Sargassum). But it was generally unrecognizable in that turbid waters, in which the vertical limit of vegetation was at most $10{\sim}15$ meters in depth. The low subtidal zone was characterized by a general lack of algal species and was not easily distinguished from the mid or sometimes from the upper zone. There was a distinct difference in abundance of vegetation between turbid waters and clear waters including Munsom, Kwantaldo, Yosodo, Hongdo, Ch'ujado. In turbid waters the vegetation was much poorer because the tubidity caused from the muddy sediment inhibited an algae to settle down and to grow up. On the basis of the phytogeographical methods using UPGMA, the 10 studied islands were classified into two groups, Munsom and the others. This floristic discontinuity between the two groups might be caused from the difference of water temperature.

  • PDF

A New Algorithm for the Interpretation of Joint Orientation Using Multistage Convergent Photographing Technique (수렴다중촬영기법을 이용한 새로운 절리방향 해석방법)

  • 김재동;김종훈
    • Tunnel and Underground Space
    • /
    • v.13 no.6
    • /
    • pp.486-494
    • /
    • 2003
  • When the orientations of joints are measured on a rock exposure, there are frequent cases that are difficult to approach by the surveyor to the target joints or to set up scanlines on the slope. In this study, to complement such limit and weak points, a new algorithm was developed to interpret joint orientation from analyzing the images of rock slope. As a method of arranging the multiple images of a rock slope, the multistage convergent photographing system was introduced to overcome the limitation of photographing direction which existing method such as parallel stereophotogrammetric system has and to cover the range of image measurement, which is the overlapping area between the image pair, to a maximum extent. To determine camera parameters in the perspective projection equation that are the main elements of the analysis method, a new method was developed introducing three ground control points and single ground guide point. This method could be considered to be very simple compared with other existing methods using a number of ground control points and complicated analysis process. So the global coordinates of a specific point on a rock slope could be analyzed with this new method. The orientation of a joint could be calculated using the normal vector of the joint surface which can be derived from the global coordinates of several points on the joint surface analyzed from the images.

Persistent Organic Pollution and Arsenic Contamination in Asia Pacific Water: Case Study of Emerging Environmental Problems in Vietnam

  • Pham, Viet.H.
    • Journal of Wetlands Research
    • /
    • v.9 no.1
    • /
    • pp.79-89
    • /
    • 2007
  • This paper provides a comprehensive overview of the present status of several environmental problems caused by emerging toxic substances such as persistent organic pollutants (POPs), endocrine disrupting chemicals (EDCs), and arsenic in various environmental media in Vietnam. Monitoring data reported during the 1990s demonstrated elevated contamination of DDTs in most of these compartments in Vietnam. Studies in frame of the Asia-Pacific Mussel Watch Program revealed that fish, mussels and resident birds from Vietnam contained higher concentrations of DDTs as compared to other countries in region, suggesting the role of Vietnamese environment as a significant emission source of DDT in the Southeast Asian region. The estimated dietary intakes of PCBs and DDTs for Vietnamese were relatively high among Asian developing countries, suggesting potential risk for humans posed by thesechemicals. Widespread contamination of some endocrine active compounds such as alkylphenols and phthalates was observed at various sites along the coasts of northern and middle Vietnam. The presence of significant source of bisphenol-A along Red River estuary was revealed with the concentrations comparable to those reported for developed nations. A case study on seasonal variation of alkylphenols and phthalates in surface water of river delta and estuary of north and middle Vietnam indicated the differences in distribution of these compounds between dry and rainy seasons. Higher concentrations of alkylphenols and phthalates were found in dry season in estuary; while the contrasting pattern was observed in the river delta, showing elevated residues in rainy season. This result suggests the different behavior of alkylphenols and phthalates in river delta and coastal environment. From ecotoxicological perspectives, concentrations of bis-phenol A and di(2-ethylhexyl)phthalates [DEHP] in surface water from some locations in Vietnam exceeded the guideline values for Ecotoxicological Effects and the Environmental Risk Limit, respectively, suggesting potential for toxic implications on aquatic wildlife. Widespread and elevated arsenic contamination was discovered inour recent surveys in groundwater in a large area of suburban areas of Hanoi city, the capital of Vietnam. The most recent investigation in 4 villages showed about more than 50 % of groundwater samples contained As concentrations exceeding 50 g/L (the WHO and Vietnamese standard). In particular, in Son Dong villages, 58 % of samples analyzed contained As concentrations higher than 200 g/L. Good correlations were found in As concentrations in water and hair and urine of peoples in corresponding families, suggesting the chronic exposure to As by people living in As-contaminated ground water areas. In Son Dong village, As levels in hair (mean: 1.7 mg/kg dry wt) and urine (g/g creatinine) exceeding the reference values recommended by WHO, suggesting potential for human risk posed by long term accumulation of As in human body. Future studies should be focused on the time trends of POPs and EDCs in biota in Vietnam in order to predict future trend of contamination and to reveal new clues for understanding possible toxic impacts on aquatic organisms. The issues of arsenic contamination in groundwater and their chronic toxic implications on human health should be systematically investigated in the future.

  • PDF

Analysis of Quartz Content and Particle Size Distribution of Airborne Dust from Selected Foundry Operations (주물사업장 주공정별 발생하는 분진의 석영함유량 및 크기분포 연구)

  • Phee, Young Gyu;Roh, Young Man;Lee, Kwang Mook;Kim, Hyoung-Ah;Kim, Yong Woo;Won, Jeoung Il;Kim, Hyunwook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.7 no.2
    • /
    • pp.196-208
    • /
    • 1997
  • This study was performed to estimate quartz contents in the both bulk and airborne dust samples and to determine particle size distribution of airborne dust from the selected foundry operations. Total dust samples were collected by a 37mm cassette and respirable by a 10 mm nylon cyclone. Particle size distributions were determined by a Marple's 8-stage cascade impactor at the melting, molding, shakeout and finishing operations. The presence of elements in the dust samples were confirmed by the scanning electron microscopy equipped with the energy dispersive x-ray spectrometry. The quartz contents were estimated using the intensity of the absorption peak of quartz at 799 cm-l by the Fourie Transformed Infrared Spectroscopy (FTIR). The results were as follows: 1. The analysis of data from cascade Impactor showed bimodal distributions of particle size at the melting, molding and shakeout operations. Mass median aerodynamic diameters for the distributions determined by histogram were $0.48-1.65{\mu}m$ for small and $13.43-19.58{\mu}m$ for large modes. In the dust samples collected at the finishing operations, however, only a large mode of $18.89{\mu}m$ was found. 2. The percentages of total to respirable dust concentration calculated from the impactor data ranged from 42 % to 66 %. The average concentrations of respirable dust by cyclone were $0.85-1.28mg/m^3$ collected from the workers, and were $0.23-0.56mg/m^3$ from the areas surveyed. Dust concentrations of personal samples were statistically significantly higher than those of area samples. The highest dust concentration was obtained from the personal samples of the finishing operation. 3. The mean percentages of silicon and oxygen estimated by SEM-EDXA in the bulk samples ranged from 35.83 % to 36.02 % and from 39.93 %-41.64 %, respectively. 4. The average quartz contents estimated by FTIR in the respirable dust from personal samples ranged from 4.32 % to 5.36 % and 4.54 % to 4.70 % in the bulk samples. No statistical difference of quartz content was found between foundry operations. In this study, quartz content was quantified by FTIR. Although no statistically significant difference in quartz content between airborne and bulk, samples and between different foundry operations was found, it is recommended that quartz content in the individual sample of respirable dust be analyzed and the results be used either to select an applicable quartz limits or to calculate the exposure limit. Further studies, however, are needed to compare the results by FTIR and XRD since it is reported that the quartz content determined by FTIR is different from that by XRD.

  • PDF