• Title/Summary/Keyword: Exponential smoothing methods

Search Result 66, Processing Time 0.02 seconds

Forecasting and Evaluation of the Accident Rate and Fatal Accident in the Construction Industries (건설업에서 재해율과 업무상 사고 사망의 예측 및 평가)

  • Kang, Young-Sig
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • Many industrial accidents have occurred continuously in the manufacturing industries, construction industries, and service industries of Korea. Fatal accidents have occurred most frequently in the construction industries of Korea. Especially, the trend analysis of the accident rate and fatal accident rate is very important in order to prevent industrial accidents in the construction industries systematically. This paper considers forecasting of the accident rate and fatal accident rate with static and dynamic time series analysis methods in the construction industries. Therefore, this paper describes the optimal accident rate and fatal accident rate by minimization of the sum of square errors (SSE) among regression analysis method (RAM), exponential smoothing method (ESM), double exponential smoothing method (DESM), auto-regressive integrated moving average (ARIMA) model, proposed analytic function model (PAFM), and kalman filtering model (KFM) with existing accident data in construction industries. In this paper, microsoft foundation class (MFC) soft of Visual Studio 2008 was used to predict the accident rate and fatal accident rate. Zero Accident Program developed in this paper is defined as the predicted accident rate and fatal accident rate, the zero accident target time, and the zero accident time based on the achievement probability calculated rationally and practically. The minimum value for minimizing SSE in the construction industries was found in 0.1666 and 1.4579 in the accident rate and fatal accident rate, respectively. Accordingly, RAM and ARIMA model are ideally applied in the accident rate and fatal accident rate, respectively. Finally, the trend analysis of this paper provides decisive information in order to prevent industrial accidents in construction industries very systematically.

A Demand Forecasting for Aircraft Spare Parts using ARMIA (ARIMA를 이용한 항공기 수리부속의 수요 예측)

  • Park, Young-Jin;Jeon, Geon-Wook
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.79-101
    • /
    • 2008
  • This study is for improvement of repair part demand forecasting method of Republic of Korea Air Force aircraft. Recently, demand prediction methods are Weighted moving average, Linear moving average, Trend analysis, Simple exponential smoothing, Linear exponential smoothing. But these use fixed weight and moving average range. Also, NORS(Not Operationally Ready upply) is increasing. Recommended method of Box-Jenkins' ARIMA can solve problems of these method and improve estimate accuracy. To compare recent prediction method and ARIMA that use mean squared error(MSE) is reacted sensitively in change of error. ARIMA has high accuracy than existing forecasting method. If apply this method of study in other several Items, can prove demand forecast Capability.

A Development Study for Fashion Market Forecasting Models - Focusing on Univariate Time Series Models -

  • Lee, Yu-Soon;Lee, Yong-Joo;Kang, Hyun-Cheol
    • Journal of Fashion Business
    • /
    • v.15 no.6
    • /
    • pp.176-203
    • /
    • 2011
  • In today's intensifying global competition, Korean fashion industry is relying on only qualitative data for feasibility study of future projects and developmental plan. This study was conducted in order to support establishment of a scientific and rational management system that reflects market demand. First, fashion market size was limited to the total amount of expenditure for fashion clothing products directly purchased by Koreans for wear during 6 months in spring and summer and 6 months in autumn and winter. Fashion market forecasting model was developed using statistical forecasting method proposed by previous research. Specifically, time series model was selected, which is a verified statistical forecasting method that can predict future demand when data from the past is available. The time series for empirical analysis was fashion market sizes for 8 segmented markets at 22 time points, obtained twice each year by the author from 1998 to 2008. Targets of the demand forecasting model were 21 research models: total of 7 markets (excluding outerwear market which is sensitive to seasonal index), including 6 segmented markets (men's formal wear, women's formal wear, casual wear, sportswear, underwear, and children's wear) and the total market, and these markets were divided in time into the first half, the second half, and the whole year. To develop demand forecasting model, time series of the 21 research targets were used to develop univariate time series models using 9 types of exponential smoothing methods. The forecasting models predicted the demands in most fashion markets to grow, but demand for women's formal wear market was forecasted to decrease. Decrease in demand for women's formal wear market has been pronounced since 2002 when casualization of fashion market intensified, and this trend was analyzed to continue affecting the demand in the future.

Predictive Modeling of the Bus Arrival Time on the Arterial using Real-Time BIS Data (실시간 BIS자료를 이용한 간선도로의 버스도착시간 예측모형구축에 관한 연구)

  • Kim, Tae Gon;Ahn, Hyeun Chul;Kim, Seung Gil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.1-9
    • /
    • 2009
  • Bus information system(BIS), as a part of the intelligent transportation system(ITS), is one of the most advanced public transportation systems which provide the real-time bus traffic information for the users waiting the buses at the bus stop. However, correct bus information data, such as the present bus location, the user waiting time, the bus arrival time, etc. are not provided for the bus users because the proper bus arrival time predictive models are not used yet in most of the cities operating the bus information system, including the metropolitan City of Ulsan. Thus, the purpose in this study is to investigate real-time bus traffic characteristic data for identifying the bus operation characteristics on the arterial under the study in the metropolitan City of Ulsan, analyze real-time bus traffic characteristic data on the ID locations of the arterial under the study, construct the optimal unit segment models for the unit segments which are the bus stop, node and travel section using the exponential smoothing, weighted smoothing and Kalman Filter methods, respectively, and finally suggest the optimal integrated model for predicting the real-time bus arrival time at the bus stop of the arterial under the study.

A Study on the Accuracy of the Forecasting Using Group Method of Data Handling (자료(資料)취급의 집단적 방법(GMDH)을 사용한 자측(子測)의 정도(精度)에 관한 연구(硏究))

  • Jo, Am
    • Journal of Korean Society for Quality Management
    • /
    • v.14 no.1
    • /
    • pp.53-60
    • /
    • 1986
  • The purpose of this study has been finding where GMDH (Group Method of Data Handling) lies in accordance with comparing other methods and ascertaining the effectiveness of GMDH at the systems of forecasting method. Other methods used for the comparison are: multiple regression model, Brown's third exponential smoothing model. Also the study has reviewed how the expected value and equatior are changed by GMDH. At the same time, the study has also reviewed various characteristics made with comparatively a few data. In conclusion, GMDH is better than the other method in point of view fitness, high effectiveness in self-selection and self-construction of the variables.

  • PDF

Reserve Price Recommendation Methods for Auction Systems Based on Time Series Analysis (경매 시스템에서 시계열 분석에 기반한 낙찰 예정가 추천 방법)

  • Ko Min Jung;Lee Yong Kyu
    • Journal of Information Technology Applications and Management
    • /
    • v.12 no.1
    • /
    • pp.141-155
    • /
    • 2005
  • It is very important that sellers provide reasonable reserve prices for auction items in internet auction systems. Recently, an agent has been proposed to generate reserve prices automatically based on the case similarity of information retrieval theory and the moving average of time series analysis. However, one problem of the previous approaches is that the recent trend of auction prices is not well reflected on the generated reserve prices, because it simply provides the bid price of the most similar item or an average price of some similar items using the past auction data. In this paper. in order to overcome the problem. we propose a method that generates reserve prices based on the moving average. the exponential smoothing, and the least square of time series analysis. Through performance experiments. we show that the successful bid rate of the new method can be increased by preventing sellers from making unreasonable reserve prices compared with the previous methods.

  • PDF

Forecasting Volatility of Stocks Return: A Smooth Transition Combining Forecasts

  • HO, Jen Sim;CHOO, Wei Chong;LAU, Wei Theng;YEE, Choy Leng;ZHANG, Yuruixian;WAN, Cheong Kin
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.10
    • /
    • pp.1-13
    • /
    • 2022
  • This paper empirically explores the predicting ability of the newly proposed smooth transition (ST) time-varying combining forecast methods. The proposed method allows the "weight" of combining forecasts to change gradually over time through its unique feature of transition variables. Stock market returns from 7 countries were applied to Ad Hoc models, the well-known Generalized Autoregressive Conditional Heteroskedasticity (GARCH) family models, and the Smooth Transition Exponential Smoothing (STES) models. Of the individual models, GJRGARCH and STES-E&AE emerged as the best models and thereby were chosen for constructing the combined forecast models where a total of nine ST combining methods were developed. The robustness of the ST combining forecasts is also validated by the Diebold-Mariano (DM) test. The post-sample forecasting performance shows that ST combining forecast methods outperformed all the individual models and fixed weight combining models. This study contributes in two ways: 1) the ST combining methods statistically outperformed all the individual forecast methods and the existing traditional combining methods using simple averaging and Bates & Granger method. 2) trading volume as a transition variable in ST methods was superior to other individual models as well as the ST models with single sign or size of past shocks as transition variables.

A Study on the Building Energy Analysis and Algorithm of Energy Management System (건물 에너지 분석 및 에너지 관리 시스템 알고리즘에 관한 연구)

  • Han, Byung-Jo;Park, Ki-Kwang;Koo, Kyung-Wan;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.505-510
    • /
    • 2009
  • In this paper, building energy analysis and energy cost of power stand up and demand control over the power proposed to reduce power demand. Through analysis of the load power demand special day were able to apply the pattern. In addition, the existing rate of change of load forecasting to reduce the large errors were not previously available data. And daily schedules and special day for considering the exponential smoothing methods were used. Previous year's special day and the previous day due to the uncertainty of the load and the model components were considered. The maximum demand power control simulation using the fuzzy control of power does not exceed the contract. Through simulation, the benefits of the proposed energy-saving techniques were demonstrated.

Predictive analysis of the Number of Cataract Surgeries (백내장 수술건수 추이예측 분석)

  • Jeong, Ji-Yun;Jeong, Jae-Yeon;Lee, Hae-Jong
    • Korea Journal of Hospital Management
    • /
    • v.25 no.2
    • /
    • pp.69-75
    • /
    • 2020
  • Purposes: This study aims to investigate the number of cataract surgeries and predict future trends using 13-year data. Methodology: Trends investigation and comparison of prediction methods was conducted to determine better prediction model using Major Surgery Statistics from Korean Statistical Information Service in 2006-2018. ARIMA(Auto Regressive Integrated Moving Average) was selected and prediction was conducted using R program. Findings: As a results, the number of surgeries will continue to increase. The trends was predicted to increase during January-April, and it declined over time and was the lowest in August. Pratical Implications: Therefore, it is necessary that management will be needed by continuously investigating and predicting the demand and trend for surgery to prepare an alternative to the increase.

Study on Development of High Speed Rotating Arc Sensor and Its Application (고속 회전 아크센서 개발 및 그 응용에 관한 연구)

  • Jeong, Sang-Kwun;Lee, Gun-You;Lee, Won-Ki;Kim, Sang-Bong
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.700-705
    • /
    • 2001
  • The paper presents a seam tracking controller of high speed rotating arc sensor developed by microprocessor based system. The seam tracking algorithm is based on the average current value at each interval region of four phase points on one rotating cycle. To remove the noise effect for the measured current, the area during one rotating cycle is separated into four regions of front, rear, left and right. The average values at each region are calculated, using the regional current values and a low pass filter incorporating the moving average and exponential smoothing methods is adopted.

  • PDF