• Title/Summary/Keyword: Exponential Smoothing

Search Result 187, Processing Time 0.022 seconds

Exponential Smoothing with an Adaptive Response to Random Level Changes (임의의 수준변화에 적절히 반응할 수 있는 지수이동가중평균법)

  • Jun, Duk-Bin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.16 no.2
    • /
    • pp.129-134
    • /
    • 1990
  • Exponential smoothing methods have enjoyed a long history of successful applications and have been used in forecasting for many years. However, it has been long known that one of the deficiencies of the method is an inability to respond quickly to interventions to interruptions, or to large changes in level of the underlying process. An exponential smoothing method adaptive to repeated random level changes is proposed using a change-detection statistic derived from a simple dynamic linear model. The results are compared with Trigg and Leach's and the exponential smoothing methods.

  • PDF

An Extension of the Optimality of Exponential Smoothing to Integrated Moving Average Process (일반적인 IMA과정에 대한 지수평활 최적성의 확장)

  • Park, Hae-Chul;Park, Sung-Joo
    • Journal of the military operations research society of Korea
    • /
    • v.8 no.1
    • /
    • pp.99-107
    • /
    • 1982
  • This paper is concerned with the optimality of exponential smoothing applied to the general IMA process with different moving average and differencing orders. Numerical experiments were performed for IMA(m,n) process with various combinations of m and n, and the corresponding forecast errors were compared. Results show that the higher differencing order is more critical to the optimality of exponential smoothing, i.e., the IMA process with the higher moving average order, forecasted by exponential smoothing, has comparatively smaller forecast error. If the difference between the differencing order and the moving average order becomes larger, the accuracy of forecast by exponential smoothing declines gradually.

  • PDF

Estimation of Smoothing Constant of Minimum Variance and its Application to Industrial Data

  • Takeyasu, Kazuhiro;Nagao, Kazuko
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.44-50
    • /
    • 2008
  • Focusing on the exponential smoothing method equivalent to (1, 1) order ARMA model equation, a new method of estimating smoothing constant using exponential smoothing method is proposed. This study goes beyond the usual method of arbitrarily selecting a smoothing constant. First, an estimation of the ARMA model parameter was made and then, the smoothing constants. The empirical example shows that the theoretical solution satisfies minimum variance of forecasting error. The new method was also applied to the stock market price of electrical machinery industry (6 major companies in Japan) and forecasting was accomplished. Comparing the results of the two methods, the new method appears to be better than the ARIMA model. The result of the new method is apparently good in 4 company data and is nearly the same in 2 company data. The example provided shows that the new method is much simpler to handle than ARIMA model. Therefore, the proposed method would be better in these general cases. The effectiveness of this method should be examined in various cases.

Forecasting of Domestic Beef Demand Using Exponential Smoothing Model (지수평활모형을 이용한 국내 소고기 수요예측)

  • Kim, Woo-Seok;Um, Ji-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.30 no.2
    • /
    • pp.231-239
    • /
    • 2022
  • The purpose of this study is to provide meaningful information for various stakeholders' decision-making process through forecasting of domestic beef demand. Three different exponential smoothing models were evaluated, and a double exponential smoothing model was used to forecast domestic beef demand based on time-series data, As a result of the forecast, domestic beef consumption is expected to increase by 37,000 to 40,000 tons per year from 2020 to 2025.

A Study on the Prediction of Power Demand for Electric Vehicles Using Exponential Smoothing Techniques (Exponential Smoothing기법을 이용한 전기자동차 전력 수요량 예측에 관한 연구)

  • Lee, Byung-Hyun;Jung, Se-Jin;Kim, Byung-Sik
    • Journal of Korean Society of Disaster and Security
    • /
    • v.14 no.2
    • /
    • pp.35-42
    • /
    • 2021
  • In order to produce electric vehicle demand forecasting information, which is an important element of the plan to expand charging facilities for electric vehicles, a model for predicting electric vehicle demand was proposed using Exponential Smoothing. In order to establish input data for the model, the monthly power demand of cities and counties was applied as independent variables, monthly electric vehicle charging stations, monthly electric vehicle charging stations, and monthly electric vehicle registration data. To verify the accuracy of the electric vehicle power demand prediction model, we compare the results of the statistical methods Exponential Smoothing (ETS) and ARIMA models with error rates of 12% and 21%, confirming that the ETS presented in this paper is 9% more accurate as electric vehicle power demand prediction models. It is expected that it will be used in terms of operation and management from planning to install charging stations for electric vehicles using this model in the future.

Development of Predictive Smoothing Voter using Exponential Smoothing Method (지수 평활법을 이용한 Predictive Smoothing Voter 개발)

  • Kim, Man-Ho;Lim, Chang-Hwy;Lee, Suk;Lee, Kyung-Chang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.34-42
    • /
    • 2006
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly. For example, a car with its steering controlled by electronics and no mechanical linkage from steering wheel to front tires(steer-by-wire) should be fault tolerant because a failure can come without any warning and its effect is devastating. In order to make system fault tolerant, there has been a body of research mainly from aerospace field. This paper presents the structure of predictive smoothing voter that can filter out most erroneous values and noise. In addition, several numerical simulation results are given where the predictive smoothing voter outperforms well-known average and median voters.

Robust Method of Video Contrast Enhancement for Sudden Illumination Changes (급격한 조명 변화에 강건한 동영상 대조비 개선 방법)

  • Park, Jin Wook;Moon, Young Shik
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.11
    • /
    • pp.55-65
    • /
    • 2015
  • Contrast enhancement methods for a single image applied to videos may cause flickering artifacts because these methods do not consider continuity of videos. On the other hands, methods considering the continuity of videos can reduce flickering artifacts but it may cause unnecessary fade-in/out artifacts when the intensity of videos changes abruptly. In this paper, we propose a robust method of video contrast enhancement for sudden illumination changes. The proposed method enhances each frame by Fast Gray-Level Grouping(FGLG) and considers the continuity of videos by an exponential smoothing filter. The proposed method calculates the smoothing factor of an exponential smoothing filter using a sigmoid function and applies to each frame to reduce unnecessary fade-in/out effects. In the experiment, 6 measurements are used for the performance analysis of the proposed method and traditional methods. Through the experiment. it has been shown that the proposed method demonstrates the best quantitative performance of MSSIM and Flickering score and show the adaptive enhancement under sudden illumination change through the visual quality comparison.

Estimation of Smoothing Constant of Minimum Variance and Its Application to Shipping Data with Trend Removal Method

  • Takeyasu, Kazuhiro;Nagata, Keiko;Higuchi, Yuki
    • Industrial Engineering and Management Systems
    • /
    • v.8 no.4
    • /
    • pp.257-263
    • /
    • 2009
  • Focusing on the idea that the equation of exponential smoothing method (ESM) is equivalent to (1, 1) order ARMA model equation, new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Theoretical solution was derived in a simple way. Mere application of ESM does not make good forecasting accuracy for the time series which has non-linear trend and/or trend by month. A new method to cope with this issue is required. In this paper, combining the trend removal method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removal by a linear function is applied to the original shipping data of consumer goods. The combination of linear and non-linear function is also introduced in trend removal. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful especially for the time series that has stable characteristics and has rather strong seasonal trend and also the case that has non-linear trend. The effectiveness of this method should be examined in various cases.

Computation and Smoothing Parameter Selection In Penalized Likelihood Regression

  • Kim Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.3
    • /
    • pp.743-758
    • /
    • 2005
  • This paper consider penalized likelihood regression with data from exponential family. The fast computation method applied to Gaussian data(Kim and Gu, 2004) is extended to non Gaussian data through asymptotically efficient low dimensional approximations and corresponding algorithm is proposed. Also smoothing parameter selection is explored for various exponential families, which extends the existing cross validation method of Xiang and Wahba evaluated only with Bernoulli data.