• 제목/요약/키워드: Exponential Smoothing

검색결과 187건 처리시간 0.021초

임의의 수준변화에 적절히 반응할 수 있는 지수이동가중평균법 (Exponential Smoothing with an Adaptive Response to Random Level Changes)

  • 전덕빈
    • 대한산업공학회지
    • /
    • 제16권2호
    • /
    • pp.129-134
    • /
    • 1990
  • Exponential smoothing methods have enjoyed a long history of successful applications and have been used in forecasting for many years. However, it has been long known that one of the deficiencies of the method is an inability to respond quickly to interventions to interruptions, or to large changes in level of the underlying process. An exponential smoothing method adaptive to repeated random level changes is proposed using a change-detection statistic derived from a simple dynamic linear model. The results are compared with Trigg and Leach's and the exponential smoothing methods.

  • PDF

일반적인 IMA과정에 대한 지수평활 최적성의 확장 (An Extension of the Optimality of Exponential Smoothing to Integrated Moving Average Process)

  • 박해철;박성주
    • 한국국방경영분석학회지
    • /
    • 제8권1호
    • /
    • pp.99-107
    • /
    • 1982
  • This paper is concerned with the optimality of exponential smoothing applied to the general IMA process with different moving average and differencing orders. Numerical experiments were performed for IMA(m,n) process with various combinations of m and n, and the corresponding forecast errors were compared. Results show that the higher differencing order is more critical to the optimality of exponential smoothing, i.e., the IMA process with the higher moving average order, forecasted by exponential smoothing, has comparatively smaller forecast error. If the difference between the differencing order and the moving average order becomes larger, the accuracy of forecast by exponential smoothing declines gradually.

  • PDF

Estimation of Smoothing Constant of Minimum Variance and its Application to Industrial Data

  • Takeyasu, Kazuhiro;Nagao, Kazuko
    • Industrial Engineering and Management Systems
    • /
    • 제7권1호
    • /
    • pp.44-50
    • /
    • 2008
  • Focusing on the exponential smoothing method equivalent to (1, 1) order ARMA model equation, a new method of estimating smoothing constant using exponential smoothing method is proposed. This study goes beyond the usual method of arbitrarily selecting a smoothing constant. First, an estimation of the ARMA model parameter was made and then, the smoothing constants. The empirical example shows that the theoretical solution satisfies minimum variance of forecasting error. The new method was also applied to the stock market price of electrical machinery industry (6 major companies in Japan) and forecasting was accomplished. Comparing the results of the two methods, the new method appears to be better than the ARIMA model. The result of the new method is apparently good in 4 company data and is nearly the same in 2 company data. The example provided shows that the new method is much simpler to handle than ARIMA model. Therefore, the proposed method would be better in these general cases. The effectiveness of this method should be examined in various cases.

지수평활모형을 이용한 국내 소고기 수요예측 (Forecasting of Domestic Beef Demand Using Exponential Smoothing Model)

  • 김우석;엄지범
    • 한국유기농업학회지
    • /
    • 제30권2호
    • /
    • pp.231-239
    • /
    • 2022
  • The purpose of this study is to provide meaningful information for various stakeholders' decision-making process through forecasting of domestic beef demand. Three different exponential smoothing models were evaluated, and a double exponential smoothing model was used to forecast domestic beef demand based on time-series data, As a result of the forecast, domestic beef consumption is expected to increase by 37,000 to 40,000 tons per year from 2020 to 2025.

Exponential Smoothing기법을 이용한 전기자동차 전력 수요량 예측에 관한 연구 (A Study on the Prediction of Power Demand for Electric Vehicles Using Exponential Smoothing Techniques)

  • 이병현;정세진;김병식
    • 한국방재안전학회논문집
    • /
    • 제14권2호
    • /
    • pp.35-42
    • /
    • 2021
  • 본 논문은 전기자동차 충전시설 확충계획에 중요한 요소인 전기자동차 전력 수요량 예측정보를 생산하기 위하여 Exponential Smoothing를 이용하여 전력 수요량 예측 모형을 제안하였다. 모형의 입력자료 구축을 위하여 종속변수로 월별 시군구 전력수요량을 독립변수로 월별 시군구 충전소 보급대수, 월별 시군구 전기자동차 충전소 충전 횟수, 월별 전기자동차 등록대수 자료를 월 단위로 수집하고 수집된 7년간 자료 중 4년간 자료를 학습기간으로 3년간 자료를 검증 기간으로 적용하였다. 전기자동차 전력 수요량 예측 모형의 정확성을 검증하기위하여 통계적 방법인 Exponential Smoothing(ETS), ARIMA모형의 결과와 비교한 결과 ETS, ARIMA 각각의 오차율은 12%, 21%로 본 논문에서 제시한 ETS가 9% 더 정확하게 분석되었으며, 전기자동차 전력 수요량 예측 모형으로써 적합함을 확인하였다. 향후 이 모형을 이용한 전기자동차 충전소 설치 계획부터 운영관리 측면에서 활용될 것으로 기대한다.

지수 평활법을 이용한 Predictive Smoothing Voter 개발 (Development of Predictive Smoothing Voter using Exponential Smoothing Method)

  • 김만호;임창휘;이석;이경창
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.34-42
    • /
    • 2006
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly. For example, a car with its steering controlled by electronics and no mechanical linkage from steering wheel to front tires(steer-by-wire) should be fault tolerant because a failure can come without any warning and its effect is devastating. In order to make system fault tolerant, there has been a body of research mainly from aerospace field. This paper presents the structure of predictive smoothing voter that can filter out most erroneous values and noise. In addition, several numerical simulation results are given where the predictive smoothing voter outperforms well-known average and median voters.

급격한 조명 변화에 강건한 동영상 대조비 개선 방법 (Robust Method of Video Contrast Enhancement for Sudden Illumination Changes)

  • 박진욱;문영식
    • 전자공학회논문지
    • /
    • 제52권11호
    • /
    • pp.55-65
    • /
    • 2015
  • 동영상 대조비 개선 과정에서 단일 영상을 위해 연구된 대조비 개선 방법들을 사용할 수 있지만, 동영상의 연속성이 고려되지 않으면 원본 동영상에 없는 깜박임을 야기할 수 있다. 또한 동영상의 연속성을 고려하는 경우, 깜박임은 억제할 수 있지만 연속성 때문에 조명의 급격한 변화할 때 불필요한 페이드인/아웃(fade-in/out) 현상이 발생하는 단점이 발생할 수 있다. 본 논문에서는 깜박임과 페이드인/아웃 현상 없이 동영상의 대조비를 개선하는 방법을 제안한다. 제안하는 방법은 Fast Gray-Level Grouping(FGLG)를 사용하여 각 프레임의 대조비를 개선하고, 깜박임을 억제하기 위해 Exponential smoothing 필터를 사용한다. 불필요한 페이드인/아웃 현상을 억제하기 위해서는 S형 함수로 Exponential smoothing 필터의 평활화 비율을 프레임 별로 적응적으로 계산하여 적용한다. 실험에서 제안하는 방법과 기존의 방법들은 6가지 측정 기준을 적용하여 성능을 비교 및 분석한다. 실험 결과, 제안하는 방법은 영상 형태 보존을 측정하는 MSSIM과 깜박임을 측정하는 Flickering score에서 정량적으로 가장 높은 결과를 보여주었으며, 시각적인 품질 비교를 통해 조명 변화에 따른 적응적인 개선을 정성적 결과로 입증하였다.

Estimation of Smoothing Constant of Minimum Variance and Its Application to Shipping Data with Trend Removal Method

  • Takeyasu, Kazuhiro;Nagata, Keiko;Higuchi, Yuki
    • Industrial Engineering and Management Systems
    • /
    • 제8권4호
    • /
    • pp.257-263
    • /
    • 2009
  • Focusing on the idea that the equation of exponential smoothing method (ESM) is equivalent to (1, 1) order ARMA model equation, new method of estimation of smoothing constant in exponential smoothing method is proposed before by us which satisfies minimum variance of forecasting error. Theoretical solution was derived in a simple way. Mere application of ESM does not make good forecasting accuracy for the time series which has non-linear trend and/or trend by month. A new method to cope with this issue is required. In this paper, combining the trend removal method with this method, we aim to improve forecasting accuracy. An approach to this method is executed in the following method. Trend removal by a linear function is applied to the original shipping data of consumer goods. The combination of linear and non-linear function is also introduced in trend removal. For the comparison, monthly trend is removed after that. Theoretical solution of smoothing constant of ESM is calculated for both of the monthly trend removing data and the non monthly trend removing data. Then forecasting is executed on these data. The new method shows that it is useful especially for the time series that has stable characteristics and has rather strong seasonal trend and also the case that has non-linear trend. The effectiveness of this method should be examined in various cases.

Computation and Smoothing Parameter Selection In Penalized Likelihood Regression

  • Kim Young-Ju
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.743-758
    • /
    • 2005
  • This paper consider penalized likelihood regression with data from exponential family. The fast computation method applied to Gaussian data(Kim and Gu, 2004) is extended to non Gaussian data through asymptotically efficient low dimensional approximations and corresponding algorithm is proposed. Also smoothing parameter selection is explored for various exponential families, which extends the existing cross validation method of Xiang and Wahba evaluated only with Bernoulli data.