• Title/Summary/Keyword: Exponential Linear Unit

Search Result 35, Processing Time 0.029 seconds

Deep Learning Based 3D Gesture Recognition Using Spatio-Temporal Normalization (시 공간 정규화를 통한 딥 러닝 기반의 3D 제스처 인식)

  • Chae, Ji Hun;Gang, Su Myung;Kim, Hae Sung;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.5
    • /
    • pp.626-637
    • /
    • 2018
  • Human exchanges information not only through words, but also through body gesture or hand gesture. And they can be used to build effective interfaces in mobile, virtual reality, and augmented reality. The past 2D gesture recognition research had information loss caused by projecting 3D information in 2D. Since the recognition of the gesture in 3D is higher than 2D space in terms of recognition range, the complexity of gesture recognition increases. In this paper, we proposed a real-time gesture recognition deep learning model and application in 3D space using deep learning technique. First, in order to recognize the gesture in the 3D space, the data collection is performed using the unity game engine to construct and acquire data. Second, input vector normalization for learning 3D gesture recognition model is processed based on deep learning. Thirdly, the SELU(Scaled Exponential Linear Unit) function is applied to the neural network's active function for faster learning and better recognition performance. The proposed system is expected to be applicable to various fields such as rehabilitation cares, game applications, and virtual reality.

Application of Oxygen Uptake Rate Measured by a Dynamic Method for Analysis of Related Fermentation Parameters in Cyclosporin A Fermentation:Suspended and Immobilized Cell Cultures

  • Chun, Gie-Taek;Agathos, S.N.
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.6
    • /
    • pp.1055-1060
    • /
    • 2001
  • Experimental data for the on-line estimation of cell concentration and growth rate are presented. For this purpose, we utilized the on-line calculation of the oxygen uptake rate (OUR), which was derived from a liquid phase dynamic mass balance for the oxygen during the active growth phase in cyclosporin A (CyA) fermentation. The cell yield coefficient, based on the oxygen $(Y_{x/o})$for both suspended and immobilized cells of Tolypocladium inflatum, was estimated as $1.9 gDCW/gO_2$ from a very good linear correlation between the cell mass produced and the total oxygen consumed. The calculated yield showed a good agreement with the value of $(Y_{x/o})$ generated from the correlation between the cell growth rate and the oxygen uptake rate. In addition, further experimental data are given, which were also applied to determine the specific oxygen uptake rate of T. inflatum cells during the exponential phase of CyA fermentation. A theoretical basis for the analysis of these fermentation parameters is also provided.

  • PDF

Nonlinear interaction analysis of infilled frame-foundation beam-homogeneous soil system

  • Hora, M.S.
    • Coupled systems mechanics
    • /
    • v.3 no.3
    • /
    • pp.267-289
    • /
    • 2014
  • A proper physical modeling of infilled building frame-foundation beam-soil mass interaction system is needed to predict more realistic and accurate structural behavior under static vertical loading. This is achieved via finite element method considering the superstructure, foundation and soil mass as a single integral compatible structural unit. The physical modelling is achieved via use of finite element method, which requires the use of variety of isoparametric elements with different degrees of freedom. The unbounded domain of the soil mass has been discretized with coupled finite-infinite elements to achieve computational economy. The nonlinearity of soil mass plays an important role in the redistribution of forces in the superstructure. The nonlinear behaviour of the soil mass is modeled using hyperbolic model. The incremental-iterative nonlinear solution algorithm has been adopted for carrying out the nonlinear elastic interaction analysis of a two-bay two-storey infilled building frame. The frame and the infill have been considered to behave in linear elastic manner, whereas the subsoil in nonlinear elastic manner. In this paper, the computational methodology adopted for nonlinear soil-structure interaction analysis of infilled frame-foundation-soil system has been presented.

Estimating Optimal Harvesting Production of Yellow Croaker Caught by Multiple Fisheries Using Hamiltonian Method (해밀토니안기법을 이용한 복수어업의 참조기 최적어획량 추정)

  • Nam, Jong-Oh;Sim, Seong-Hyun;Kwon, Oh-Min
    • The Journal of Fisheries Business Administration
    • /
    • v.46 no.2
    • /
    • pp.59-74
    • /
    • 2015
  • This study aims to estimate optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the offshore Stow Net and the offshore Gill Net fisheries using the current value Hamiltonian method and the surplus production model. As analyzing processes, firstly, this study uses the Gavaris general linear model to estimate standardized fishing efforts of yellow croaker caught by the above multiple fisheries. Secondly, this study applies the Clarke Yoshimoto Pooley(CY&P) model among the various exponential growth models to estimate intrinsic growth rate(r), environmental carrying capacity(K), and catchability coefficient(q) of yellow croaker which inhabits in offshore area of Korea. Thirdly, the study determines optimal harvesting production, fishing efforts, and stock levels of yellow croaker using the current value Hamiltonian method which is including average landing price of yellow croaker, average unit cost of fishing efforts, and social discount rate based on standard of the Korean Development Institute. Finally, this study tries sensitivity analysis to understand changes in optimal harvesting production, fishing efforts, and stock levels of yellow croaker caused by changes in economic and biological parameters. As results drawn by the current value Hamiltonian model, the optimal harvesting production, fishing efforts, and stock levels of yellow croaker caught by the multiple fisheries were estimated as 19,173 ton, 101,644 horse power, and 146,144 ton respectively. In addition, as results of sensitivity analysis, firstly, if the social discount rate and the average landing price of yellow croaker continuously increase, the optimal harvesting production of yellow croaker increases at decreasing rate and then finally slightly decreases due to decreases in stock levels of yellow croaker. Secondly, if the average unit cost of fishing efforts continuously increases, the optimal fishing efforts of the multiple fisheries decreases, but the optimal stock level of yellow croaker increases. The optimal harvest starts climbing and then continuously decreases due to increases in the average unit cost. Thirdly, when the intrinsic growth rate of yellow croaker increases, the optimal harvest, fishing efforts, and stock level all continuously increase. In conclusion, this study suggests that the optimal harvesting production and fishing efforts were much less than actual harvesting production(35,279 ton) and estimated standardized fishing efforts(175,512 horse power) in 2013. This result implies that yellow croaker has been overfished due to excessive fishing efforts. Efficient management and conservative policy on stock of yellow croaker need to be urgently implemented.

Liquid chromatography-tandem mass spectrometric analysis of oleracone D and its application to pharmacokinetic study in mice

  • Lim, Dong Yu;Lee, Tae Yeon;Lee, Jaehyeok;Song, Im-Sook;Han, Young Taek;Choi, Min-Koo
    • Analytical Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.193-201
    • /
    • 2021
  • We have demonstrated a sensitive analytical method of measuring oleracone D in mouse plasma using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Oleracone D and oleracone F (internal standard) in mouse plasma samples were processed using a liquid-liquid extraction method with methyl tertbutyl ether, resulting in high and reproducible extraction recovery (80.19-82.49 %). No interfering peaks around the peak elution time of oleracone D and oleracone F were observed. The standard calibration curves for oleracone D ranged from 0.5 to 100 ng/mL and were linear with r2 of 0.992. The inter- and intra-day accuracy and precision and the stability fell within the acceptance criteria. The pharmacokinetics of oleracone D following intravenous and oral administration of oleracone D at doses of 5 mg/kg and 30 mg/kg, respectively, were investigated. When oleracone D was intravenously injected, it had first-order elimination kinetics with high clearance and volume of distribution values. The absolute oral bioavailability of this compound was calculated as 0.95 %, with multi-exponential kinetics. The low aqueous solubility and a high oral dose of oleracone D may explain the different elimination kinetics of oleracone D between intravenous and oral administration. Collectively, this newly developed sensitive LC-MS/MS method of oleracone D could be successfully utilized for investigating the pharmacokinetic properties of this compound and could be used in future studies for the lead optimization and biopharmaceutic investigation of oleracone D.

Spikelet Number Estimation Model Using Nitrogen Nutrition Status and Biomass at Panicle Initiation and Heading Stage of Rice

  • Cui, Ri-Xian;Lee, Lee-Byun-Woo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.390-394
    • /
    • 2002
  • Spikelet number per unit area(SPN) is a major determinant of rice yield. Nitrogen nutrition status and biomass during reproductive stage determine the SPN. To formulate a model for estimating SPN, the 93 field experiment data collected from widely different regions with different japonica varieties in Korea and Japan were analyzed for the upper boundary lines of SPN responses to nitrogen nutrition index(NNI), shoot dry weight and shoot nitrogen content at panicle initiation and heading stage. The boundary lines of SPN showed asymptotic responses to all the above parameters(X) and were well fitted to the exponential function of $f(X)=alphacdot{1-etacdotexp(gamma;cdot;X)}$. Excluding the constant, from the boundary line equation, the values of the equation range from 0 to 1 and represent the indices of parameters expressing the degree of influence on SPN. In addition to those indices, the index of shoot dry weight increase during reproductive stage was calculated by directly dividing the shoot dry weight increase by the maximum value ($800 extrm{g/m}^{-2}$) of dry weight increase as it showed linear relationship with SPN. Four indices selected by forward stepwise regression at the stay level of 0.05 were those for NNI ($I_{NNI}_P$) at panicle initiation, NNI($I_{NNI}_h$) and shoot dry weight($I_{DW}_h$) at heading stage, and dry weight increase($I_{DW}$) between those two stages. The following model was obtained: SPN=48683ㆍ $I_{DWH}$$^{0.482}$$I_{NNIp}$$^{0.387}$$I_{NNIH}$$^{0.318}$$I_{DW}$ $^{0.35}$). This model accounted for about 89% of the variation of spikelet number. In conclusion this model could be used for estimating the spikelet number of japonica rice with some confidence in widely different regions and thus, integrated into a rice growth model as a component model for spikelet number estimation.n.n.

A Novel Road Segmentation Technique from Orthophotos Using Deep Convolutional Autoencoders

  • Sameen, Maher Ibrahim;Pradhan, Biswajeet
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.4
    • /
    • pp.423-436
    • /
    • 2017
  • This paper presents a deep learning-based road segmentation framework from very high-resolution orthophotos. The proposed method uses Deep Convolutional Autoencoders for end-to-end mapping of orthophotos to road segmentations. In addition, a set of post-processing steps were applied to make the model outputs GIS-ready data that could be useful for various applications. The optimization of the model's parameters is explained which was conducted via grid search method. The model was trained and implemented in Keras, a high-level deep learning framework run on top of Tensorflow. The results show that the proposed model with the best-obtained hyperparameters could segment road objects from orthophotos at an average accuracy of 88.5%. The results of optimization revealed that the best optimization algorithm and activation function for the studied task are Stochastic Gradient Descent (SGD) and Exponential Linear Unit (ELU), respectively. In addition, the best numbers of convolutional filters were found to be 8 for the first and second layers and 128 for the third and fourth layers of the proposed network architecture. Moreover, the analysis on the time complexity of the model showed that the model could be trained in 4 hours and 50 minutes on 1024 high-resolution images of size $106{\times}106pixels$, and segment road objects from similar size and resolution images in around 14 minutes. The results show that the deep learning models such as Convolutional Autoencoders could be a best alternative to traditional machine learning models for road segmentation from aerial photographs.

Development of Curve Fitted Equation about Dynamic Response Analysis of a Buried Concrete Pipelines (콘크리트 매설관의 동적응답해석에 대한 곡선적합식의 개발)

  • Jeong Jin-Ho;Kim Sung-Ban;Ahn Myung-Seok
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.9-19
    • /
    • 2006
  • The objective of this study is to propose curve fitted equations that can facilitate calculations and improve a practical applicability when the seismic performance of buried pipelines needs to be evaluated. The curve fitted equations are derived based on the evaluation of the dynamic responses of concrete pipe with a boundary condition of fixed-free ends. To study the dynamic response of underground pipe, the numerical analysis program developed in the previous research has been used. The location of maximum strain has been determined through dynamic analyses for a boundary condition of fixed-free ends. Then $wavelength{\lambda}$ of 5-1000(m) and propagation velocity(Vs) of 100-2000(m/s) have been applied at the location of maximum strain and the unit srain curve with the changes of the $wavelength{\lambda}$ and propagation velocity(Vs) has been obtaind. Non-linear least-square regression has been used to develop highly applicable curve fitted equations and various types of exponential regression equations have been checked out. Thus curve fitted equations and necessary coefficients with best results are suggested.

Study on the Development of a Model for Teaching and Learning Mathematics Using Graphic Calculators (그래픽 계산기를 활용하는 수학과 교수-학습 자료 모형 개발 연구)

  • 강옥기
    • Journal of Educational Research in Mathematics
    • /
    • v.8 no.2
    • /
    • pp.453-474
    • /
    • 1998
  • This study is focused on the possibility if we can use graphic calculators in teaching and learning school mathematics. This study is consisted with four main chapters. In chapter II, the functions of the graphic calculator EL-9600 produced by Sharp Corporation was analyzed focused on the possibilities if the functions could be used in teaching and learning school mathematics. Calculating of real numbers and complex numbers, solving equations and system of linear equations, calculating of matrices, graphing of several functions including polynomial functions, trigonometric functions, exponential and logarithmic functions, calculation of differential and integrals, arranging of statical data, graphing of statistical data, testing of statistical hypotheses, and other more useful functions were founded. In Chapter III, a mathematics textbook developed by Core-Plus Mathematics Project was analyzed focused on how a graphic calculator was used in teaching and learning mathematics, In the textbook, graphic calculator was used as a tool in understanding mathematical concepts and solving problems. Graphic calculator is not just a tool to do complex computations but a tool used in the processes of doing mathematics, In chapter IV, the 7th mathematics curriculum for korean secondary schools was analyzed to find the contents could be taught by using graphic calculators. Most of the domains, except geometric figure, were found that they could be taught by using graphic calculators, In chapter V, a model of a unit using graphic calculator in teaching 7th mathematics curriculum was developed. In this model, graphic calculator was used as a tool in the processes of understanding mathematical concepts and solving problems. This study suggests the possibilities that we can use graphic calculators effectively in teaching and learning mathematical concepts and problem solving for most domains of secondary school mathematics.

  • PDF

Typology of ROII Patterns on Cluster Analysis in Korean Enterprises

  • Kim, Young Sun;Kwon, Oh Jun;Kim, Ki Sik;Rhee, Kyung Yong
    • Safety and Health at Work
    • /
    • v.3 no.4
    • /
    • pp.278-286
    • /
    • 2012
  • Objectives: Authors investigated the pattern of the rate of occupational injuries and illnesses (ROII) at the level of enterprises in order to build a network for exchange of experience and knowledge, which would contribute to workers' safety and health through safety climate of workplace. Methods: Occupational accidents were analyzed at the manufacturing work site unit. A two step clustering process for the past patterns regarding the ROII from 2001 to 2009 was investigated. The ROII patterns were categorized based on regression analysis and the patterns were further divided according to the subtle changes with Mahalanobis distance and Ward's linkage. Results: The first clustering of ROII through regression analysis showed 5 different functions; 29 work sites of the linear function, 50 sites of the quadratic function, 95 sites of the logarithm function, 62 sites of the exponential function, and 54 sites of the sine function. Fourteen clusters were created in the second clustering. There were 3 clusters in each function categorized in the first clustering except for sine function. Each cluster consisted of the work sites with similar ROII patterns, which had unique characteristics. Conclusion: The five different patterns of ROII suggest that tailored management activities should be applied to every work site. Based on these differences, the authors selected exemplary work sites and built a network to help the work sites to share information on safety climate and accident prevention measures. The causes of different patterns of ROII, building network and evaluation of this management model should be evaluated as future researches.