• Title/Summary/Keyword: Explosive cutting

Search Result 29, Processing Time 0.029 seconds

Structural Design of Cube Satellite by Using Heating Wire Cutting Type Separation Mechanism (열선절단방식 구속분리장치를 적용한 큐브위성의 구조설계)

  • Oh, Hyun-Ung;Kwon, Sung-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.9
    • /
    • pp.720-725
    • /
    • 2013
  • Nylon wire cutting method by nichrome wire is generally applicable for cube satellite applications due to its advantages of simplicity. However, the system complexity is not avoidable to apply it on the cube satellite with multi-deployable structures. A lower constraint force of the mechanism is also one of the disadvantages of the mechanism. In this study, we proposed a preliminary structure design of cube satellite with the separation mechanism which is applicable for holding and release of the multi-deployable structures. The effectiveness of the mechanism design was verified through function test of EM mechanism. The structure analysis results showed that the structure design proposed in this study is feasible.

Performance Evaluation of Hinge Driving Separation Nut-type Holding and Releasing Mechanism Triggered by Nichrome Burn Wire

  • LEE, Myeong-Jae;LEE, Yong-Keun;OH, Hyun-Ung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.602-613
    • /
    • 2015
  • As one of the mission payloads to be verified through the cube satellite mission of Cube Laboratory for Space Technology Experimental Project (STEP Cube Lab), we developed a hinge driving separation nut-type holding and releasing mechanism. The mechanism offers advantages, such as a large holding capacity and negligible induced shock, although its activation principle is based on a nylon cable cutting mechanism triggered by a nichrome burn wire generally used for cube satellite applications for the purpose of holding and releasing onboard appendages owing to its simplicity and low cost. The basic characteristics of the mechanism have been measured through a release function test, static load test under qualification temperature limits, and shock measurement test. In addition, the structural safety and operational functionality of the mechanism module under launch and on-orbit environments have been successfully demonstrated through a vibration test and thermal vacuum test.

Risk-based Security Impact Evaluation of Bridges for Terrorism (Security and Risk를 기반으로 한 교량구조물의 재난 안전성 평가)

  • Kang, Sang-Hyeok;Choi, Hyun-Ho;Seo, Jong-Won
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.629-632
    • /
    • 2008
  • Risk-based security impact evaluation may be affected by various factors according to numerous combinations of explosive devices, cutting devices, impact vehicles, and specific attack location to consider. Presently, in planning and design phases, designers are still often uncertain of their responsibility, lack of information and training of security. Therefore, designers are still failing to exploit the potential to reduce threats on site. In this study, the concept of security impact assessment is introduced in order to derive the performing design for safety in design phase. For this purpose, a framework for security impact assessment model using risk-based approach for bridge structures is suggested. The suggested model includes of information survey, classification of terror threats, and quantitative estimation of severity and occurrence.

  • PDF

Separation Device of Deployable SAR Antenna for satellite (위성용 전개형 SAR 안테나 구속분리장치 )

  • Junwoo, Choi;Bohyun, Hwang;Byungkyu, Kim;Dong-yeon, Kim;Hyun-guk, Kim
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.123-128
    • /
    • 2022
  • This paper proposes a non-explosive separation device for the deployable SAR antenna. This device utilises a Ni-Cr wire to restrain the antenna's belt mechanism, and joule-heating is used to minimise the impact of deployment. After the Ni-Cr wire has been cut, the device is deployed through the preload of the belt mechanism. Considering the design load(99g) and preload conditions, FEM analysis for AL7050 and Ti was performed. This analysis revealed that the amount of deformation for AL7050 was 0.256 mm with a margin of +0.09. In addition, by performing orbital thermal analysis, the temperature distribution for AL7050 in the worst cold case is confirmed as -50 to +2℃ and -10 to +90℃ in the worst hot case. This analysis confirmed that the separation device would remain stable even in the worst environment.

A Case Study on Explosive Demolition of Turbine Building of Steel Frame Structure (터빈동 철골구조물 발파해체 시공사례)

  • Hoon, Park;Sung-Woo, Nam;You-Song, Noh;Chul-Gi, Suk
    • Explosives and Blasting
    • /
    • v.40 no.4
    • /
    • pp.35-46
    • /
    • 2022
  • While the construction of dismantling the old industrial complex and restoring the dismantled industrial site to its original natural environment the is underway. In this paper, we introduce a case of dismantling a turbine building which one of the a large steel frame structures in an old industrial complex by applying the progressive collapse method among the blasting demolition methods. We used a charge container that generates a metal jet to cut dismantling the turbine building. The thickness of the steel structure was adjusted to 30 mm or less by applying gouging, which was a method of digging deep grooves by gas and oxygen flames or arc thermal, in the part where the cutting thickness was thick in the blasting section. The total amount of charge used for the blasting of turbine building was 175 kg, 165 electronic detonators and 124 charge containers. As a result of the blasting demolition, the turbine building was collapsed precisely according to the estimated direction. The blasting demolition was completed without causing any damage to the surrounding facilities.

A Study on Analytical Approach for Performance Evaluation of Pyrotechnically Actuated Device (파이로작동기구 성능평가를 위한 해석모델 연구)

  • Choi, Joo-Ho;Sung, Hong-Gye;Kim, Jun-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2012.05a
    • /
    • pp.63-64
    • /
    • 2012
  • A pyrotechnic actuated device (PAD) is a component that delivers high power in remote environments by combustion of a self-contained energy source. Historically, the design of these devices has been largely empirical and considered to be an art. In this study, an overview for developing an analytical model is introduced that efficiently evaluates performance of PAD. The model is integrated by three parts of different disciplines that are coupled in sequence with each other. First is the solid explosive burning to form product gas within an actuator and transport to an expansion chamber. Second is the insertion of initially tapered piston into a small hole by gas pressure in the chamber. Third is the shear cutting of the diaphragm from the piston to enable gas flow into the conduit. Some results of preliminary study for each of three parts are introduced in the presentation.

  • PDF

The Effect of Paste Rate on Shaped Charges and Metal Type Liner to Explosive Jet Cutting Ability (폭발절단력에 미치는 성형폭약 및 금속성 Liner의 가소화 영향)

  • 이병일;공창식;이익주;인영수;조영곤;박근순
    • Explosives and Blasting
    • /
    • v.18 no.3
    • /
    • pp.89-97
    • /
    • 2000
  • 최근 노후화 된 콘크리트 및 털 구조물에 대하여 환경 공해가 발생하지 않는 해체 기술의 필요성이 급증하고 있어서 이에 대한 연구가 활발히 이루어지고 있다. 그 결과 콘크리트 구조물을 일시에 해체하기 위하여 사용되고 있던 화약을 이용한 발파해체공법 및 군용 폭파 공법 등으로부터 응용되어 특수한 형태의 크기로 제작된 성형폭약을 철골구조물에 부착시킨 후 이를 폭발 시켜서 순간적으로 철골구조물의 철판(또는 빔이나 기타 부자재)을 절단 해체할 수 있게 되었다. 그 동안은 성형폭약의 폭발절단 효과에 영향을 주는 요소들인 대상 구조물의 재질 및 형상, 두께와 강도 특성, 성형폭약의 형상, 폭약의 종류, 장약량, Liner의 종류, Stand-off Distance, 성형폭약의 폭 및 너비, 기폭방법에 따른 영향과 폭발 절단시 발생되는 폭풍압에 의한 진동 및 소음의 영향 등에 대한 연구가 대부분이었다. 따라서 본 연구에서는 성형폭약의 주 구성요소인 화약과 금속성 Liner를 유연성이 탁월하고 조성 성분들의 혼합성과 성형성이 우수한 가소화제를 사용하여 제작된 성형폭약의 가소화 정도가 폭발절단력에 미치는 영향을 검토하였다. 이를 위하여 본 연구는 PETN 과 RDX 화약이 각각 25wt% 및 75wt%로 흔합된 화약원료를 85wt%로 하고 폴리이소부틸렌(P.I.B) 성분이 80 wt% 이상인 폴리부텐(P.B) 7wt% 와 부틸고무 4wt% 그리고 디에칠헥실세바케이트 4wt%로 구성된 가소화제를 사용하여 실험하였다.

  • PDF

Development of Micro-Blast Type Scabbling Technology for Contaminated Concrete Structure in Nuclear Power Plant Decommissioning

  • Lee, Kyungho;Chung, Sewon;Park, Kihyun;Park, SeongHee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2022
  • In decommissioning a nuclear power plant, numerous concrete structures need to be demolished and decontaminated. Although concrete decontamination technologies have been developed globally, concrete cutting remains problematic due to the secondary waste production and dispersion risk from concrete scabbling. To minimize workers' radiation exposure and secondary waste in dismantling and decontaminating concrete structures, the following conceptual designs were developed. A micro-blast type scabbling technology using explosive materials and a multi-dimensional contamination measurement and artificial intelligence (AI) mapping technology capable of identifying the contamination status of concrete surfaces. Trials revealed that this technology has several merits, including nuclide identification of more than 5 nuclides, radioactivity measurement capability of 0.1-107 Bq·g-1, 1.5 kg robot weight for easy handling, 10 cm robot self-running capability, 100% detonator performance, decontamination factor (DF) of 100 and 8,000 cm2·hr-1 decontamination speed, better than that of TWI (7,500 cm2·hr-1). Hence, the micro-blast type scabbling technology is a suitable method for concrete decontamination. As the Korean explosives industry is well developed and robot and mapping systems are supported by government research and development, this scabbling technology can efficiently aid the Korean decommissioning industry.

Functional Verification of Pin-puller-type Holding and Release Mechanism Based on Nylon Wire Cutting Release Method for CubeSat Applications (나일론선 절단 방식에 기반한 Pin-puller형 큐브위성용 태양전지판 구속분리장치의 기능검증)

  • Go, Ji-Seong;Son, Min-Young;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.5
    • /
    • pp.81-88
    • /
    • 2021
  • In general, a non-explosive nylon wire cutting-based holding and release mechanism has been used to store and deploy deployable solar panels of CubeSat. However, with this method, accessing the solar panel's access port for charging the cube satellite's battery and electrical inspection and testing of the PCB and payloads while the solar panel is in storage is difficult. Additionally, the mechanism must have a reliable release function in an in-orbit environment, and reusability for stow and deploy of the solar panel, which is a hassle for the operator and difficult to maintain a consistent nylon wire fastening process. In this study, we proposed a pin-puller-based solar panel holding and release mechanism that can easily deploy a solar panel without cutting nylon wires by separating constraining pins. The proposed mechanism's release function and performance were verified through a solar panel deployment test and a maximum separation load measurement test. Through this, we also verified the design feasibility and effectiveness of the pin-puller-based separation device.