• Title/Summary/Keyword: Explosive Fire

Search Result 180, Processing Time 0.024 seconds

A Study on Semi Quantitative Risk Analysis for Air Separation Unit using a GRA(Generic Risk Analysis) Method (GRA(Generic Risk Analysis) 기법을 이용한 공기분리시설에 대한 준 정량적 위험성 평가에 관한 연구)

  • Shin, Jung-Soo;Byun, Hun-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.1
    • /
    • pp.56-66
    • /
    • 2013
  • The gas production plants supply the inert gas to production plants for maintaining safe operation and also supply combustible, flammable, explosive and toxic gases as functions of basic materials needed for producing chemical goods. In addition, gas plants need to be safe and reliable operation because they are operated under high temperature, high pressure, cryogenic and catalytic reactions. As these plants have a complex process in operation, there has been a risk that major industrial accidents such as a fire, explosion and toxic gas released, also risks of asphyxiations by inert gases and burns caused by high temperature and cryogenic substances. This study is to carry out the semi quantitative risk assesment method which is the generic risk analysis (GRA). This method is applied to air separation unit(ASU) to identify its initial risk, safety barriers, residual risk and elements important for safety(EIS). The result of this study, suggested the management tools and procedures of implementation for EIS management.

A Study on the Oxygen Consumption Rate and Explosion Energy of Combustible Wood Dust in Confined System - Part I: Quantification of Explosion Energy and Explosive Efficiency (밀폐계 가연성 목재분진의 폭발에너지와 산소소모율에 관한 연구 - Part I: 폭발에너지의 정량화 및 폭발효율)

  • Kim, Yun Seok;Lee, Min Chul;Lee, Keun Won;Rie, Dong Ho
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.4
    • /
    • pp.55-63
    • /
    • 2016
  • A dust explosion is a phenomenon of strong blast wave propagation involving destruction which results from dust pyrolysis and rapid oxidation in a confined space. There has been some research done to find individual explosion characteristics and common physical laws for various dust types. However, there has been insufficient number of studies related to the heat of combustion of materials and the oxygen consumption energy about materials in respect of dust explosion characteristics. The present study focuses on the relationship between dust explosion characteristics of wood dust samples and oxygen consumption energy. Since it is difficult to estimate the weight of suspended dust participating in explosions in dust explosion and mixtures are in fuel-rich conditions concentrations with equivalent ratios exceeding 1, methods for estimating explosion overpressure by applying oxygen consumption energy based on unit volume air at standard atmospheric pressure and temperature are proposed. In this study an oxygen consumption energy model for dust explosion is developed, and by applying this model to TNT equivalent model, initial explosion efficiency was calculated by comparing the results of standardized dust explosion experiments.

On the vibration influence to the running power plant facilities when the foundation excavated of the cautious blasting works (삼천포화력발전소 3, 4호기 증설에 따르는 정밀발파작업으로 인한 인접가동발전기 및 구조물에 미치는 진동영향조사)

  • Huh, Ginn
    • Journal of the Korean Professional Engineers Association
    • /
    • v.24 no.6
    • /
    • pp.97-105
    • /
    • 1991
  • The cautious blasting works had been used with emulsion explosion electric M/S delay caps. Drill depth was from 3m to 6m with Crawler Drill ø70mm on the calcalious sand stone (soft-moderate-semi hard Rock). The total numbers of fire blast were 88 round. Scale distance were induces 15.52-60.32. It was applied to propagation Law in blasting vibration as follows. Propagation Law in Blasting Vibration (Equation omitted) where V : Peak partical velocity(cm/sec) D : Distance between explosion and recording sites(m) W : Maximum Charge per delay-period of eighit milliseconds o. more(kg) K : Ground transmission constant, empirically determind on the Rocks, Explosive and drilling pattern ets. b : Charge exponents n : Reduced exponents Where the quantity D / W$^n$ is known as the Scale distance. Above equation is worked by the U.S Bureau of Mines to determine peak particle velocity. The propagation Law can be catagrorized in three graups. Cubic root Scaling charge per delay Square root Scaling of charge per delay Site-specific Scaling of charge per delay Charge and reduction exponents carried out by multiple regressional analysis. It's divided into under loom and over 100m distance because the frequency is verified by the distance from blast site. Empirical equation of cautious blasting vibration is as follows. Over 30 ‥‥‥under 100m ‥‥‥V=41(D/$^3$√W)$\^$-1.41/ ‥‥‥A Over 100 ‥‥‥‥under 100m ‥‥‥V=121(D/$^3$√W)$\^$-1.56/ ‥‥‥B K value on the above equation has to be more specified for furthur understang about the effect of explosives, Rock strength. And Drilling pattern on the vibration levels, it is necessary to carry out more tests.

  • PDF

Fire-Retardation Properties of Silicone/Perlite Composites (실리콘/펄라이트 복합체의 난연 특성)

  • Lee, Byunggab;Won, Jongpil;Jang, Ilyoung;Bang, Daesuk
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.154-154
    • /
    • 2011
  • 최근 세계 각지에서 발생하는 대규모 터널 화재사고는 많은 사상자를 동반하고 이에 따른 경제적, 사회적 손실 또한 방대하게 진행되는 실정이다. 터널 구조물의 화재 특성상 외부에 쉽게 노출되지 않기 때문에 화재 발생 시 화재에 노출된 표층이 박리되거나 비산해서 단면결손이 생기는 폭렬 현상(explosive spalling)이 발생하게 된다. 이러한 폭렬 현상은 붕괴와 같은 대형 참사로 이어질 가능성이 크다. 따라서 본 연구에서는 터널 내 화재 발생 시 콘크리트 구조물의 폭렬에 의한 붕괴를 예방하기 위하여 이액형 상온경화 실리콘 고무와 인체에 무해한 친환경 첨가제인 펄라이트를 일정한 혼합비(5wt%, 10wt%, 15wt%, 20wt%)로 혼합하여 고성능 난연 복합체를 제조하고, 열적 특성과 난연 특성을 연구를 진행하였다. 열적 특성에 관한 시험으로 TGA를 측정하였으며, 난연 특성에 관한 시험으로는 화염 시험, 내화로 시험, 탄화로 시험을 진행하였다. 우선 TGA 시험은 $20^{\circ}C/min$ 승온 속도로 $800^{\circ}C$까지 실험을 하였고, 화염 시험은 제작한 시편과 gas torch($1200^{\circ}C$)의 화염 거리를 약 10cm로 하여 약 1시간 동안 시험을 하였다. 내화로 시험은 내화로 장치를 이용하여 RABT curve(5분만에 $1200^{\circ}C$도달 후 한 시간 동안 유지 후 냉각, 총 시험 시간 180분) 조건을 만족하는 환경에서 제작한 시편을 콘크리트에 부착하여 콘크리트의 내부온도를 측정하였다. 탄화로 시험은 탄화로 장치를 이용하여 $2^{\circ}C/min$ 승온속도로 $900^{\circ}C$까지 실험을 하여 외부 형태 변화를 관찰하였다. 각각의 시험 결과 TGA 열분해 결과 순수한 실리콘 고무보다 난연제인 펄라이트를 첨가했을 때 더 높은 온도에서 초기 분해 거동을 보였으며, 최종 잔류량은 80%를 보였고, 5 wt%의 펄라이트가 혼합된 시편의 최종 잔류량이 높은 것으로 보아 열분해에 가장 강한 조성임을 알 수 있었다. 화염 시험 결과 펄라이트가 혼합된 모든 시편에서 $300^{\circ}C$가 넘지 않은 결과를 보였다. 이는 제조된 복합체가 화염에 직접적으로 장시간 노출이 되어도 안전하다는 것을 알 수 있다. 내화로 및 탄화로 시험 결과 펄라이트가 15wt%와 20wt%가 첨가된 시편들보다 5wt%와 10wt% 첨가된 시편들이 고온에서 안정하다는 것을 보였다.

  • PDF

Explosive Accidents and Safe Handling of an Experimental Liquid Rocket Engine Using Nitrous Oxide as Oxidizer (아산화질소를 산화제로 사용하는 실험용 액체로켓의 폭발사례 및 안전사용방안)

  • Choi, Songyi;Park, Sukyoung;Lee, Donggun;Kim, Dohun;Koo, Jaye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.2
    • /
    • pp.46-54
    • /
    • 2015
  • Nitrous oxide is known as green and safe propellant, and can be supplied by its own vapor pressure. So, many liquid propulsion research institutes and university laboratories use nitrous oxide as oxidizer of experimental liquid rocket engine. However, the unknown explosions occurred twice during hot fire experiments using subscale ethanol/nitrous oxide thruster. In this paper, we surmised that the explosions were caused by the decomposition of nitrous oxide in the injector body and the recondensation of nitrous oxide. Improvement and the safe handling methods are suggested.

Shear Behavior of Prestressed Steel Fiber-Reinforced Concrete at Crack Interfaces (프리스트레스가 도입된 강섬유보강콘크리트의 균열면 전단거동)

  • Kal, Kyoung Wan;Hwang, Jin Ha;Lee, Deuck Hang;Kim, Kang Su;Choi, Il Sup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.78-88
    • /
    • 2012
  • Although structural concrete is well known for its good economic efficiency, it has limits of structural performance due to the low tensile strength, for which new structural members utilizing various concrete composite materials have been developed. Steel Fiber-Reinforced Concrete(SFRC) has great tensile strength, which is the one of the excellent composite material to complement the weakness of concrete, and it is also considered as a good alternative to prevent the explosive failure of high strength concrete under fire. Also, prestressed concrete members are of great advantages to long span structures and have greater shear strength compared to conventional reinforced concrete members. In this research, thus, a total of 22 direct shear test specimens were fabricated and tested to understand the shear behavior of Steel Fiber-Reinforced Prestressed Concrete(SFR-PSC) members, in which SFRC members combined with prestressing method. Based on the test results, the constitutive equations of shear behavior at crack interfaces were proposed, which provided good estimation on the shear behavior of the SFR-PSC direct shear test specimens.

Effect of High Temperature on Mechanical Properties of Confined Concrete with Lateral Reinforcement (고온을 받은 횡방향 철근 구속 콘크리트의 역학적 특성 연구)

  • Choi, Kwang Ho;Lee, Joong Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.1
    • /
    • pp.131-139
    • /
    • 2012
  • The lateral reinforcements of concrete such as hoops and spiral bars are known to confine concrete to compensate the strength loss due to fire by reducing explosive spalling and improving the capacity of ductility. In this context, a study was conducted to investigate the residual mechanical properties of confined and unconfined concrete($f_{ck}$=60MPa) after a single thermal cycle at 300, 600, $800^{\circ}C$. The main parameters required to establish the stress-strain relationship are the peak stress, the elastic modulus, and the strain at peak stress. The knowledge of the residual mechanical properties of concrete is necessary whenever the thermally damaged structure is required to bear a significant share of the loads, even after a severe thermal accident. Based on the results obtained in this study, the residual stress of confined concrete under thermal damage is higher according to the level of confinement and the larger strain made it to have better ductility. The decreasing ratio of elastic modulus from the relationship of stress and strain was also smaller than that of unconfined concrete.

Hazard Assessment of Explosion in Suspended Dust of Wood (목재 부유분진의 폭발 위험성 평가)

  • Lee, Keun Won;Lee, Su-Hee;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.81-86
    • /
    • 2013
  • Accidents of dust explosion has been occurred in various industries as a plastics, pharmaceuticals, timber, grain storage, solid fuels and chemicals. In this study, the silo dust, hammer mill dust and Nyusong dust in the manufacturing process of the particle board to utilize west wood, which were selected for this experiment and were evaluated the characteristics of dust explosion. The explosion characteristics such as a maximum explosion pressure, explosion index, lower explosive limit, and minimum ignition energy in suspended dust of the wood by Siwek 20 L apparatus were measured and evaluated for the experiment. The results of this study can be used the process safety measures to prevent accidents of fire and explosion in the suspended dust of wood.

Hazards of decomposition and explosion for Tert-butylperoxymaleate (터셔리부틸퍼옥시말레이트의 분해 및 폭발 위험성)

  • Lee, Jung-Suk;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2021
  • In this study, hazards of decomposition and explosion for tert-butylperoxymaleate(TBPM), an organic peroxide, were evaluated by using various equipment to determine the cause of a fire explosion accident. As a result of DSC analysis, the instantaneous power density of TBPM was 26,401 kW/ml, and the NFPA reactive index(Nr) was classified as 4. And the positive value of EP(explosive propagation) and SS(shock sensitivity) showed that the TBPM had a potential hazard of explosion. From the experimental results, the shock sensitivity and friction sensitivity was rated as class 4 and 5, respectively. In the pressure vessel test, TBPM was ranked USA-PVT No.4 and evaluated as a self-reactive substance. In the combustion rate test, TBPM had the combustion rate of 167 mm/sec and was evaluated as the flammable solid classification 2 in GHS.

A Study on the Non-Hazardous Method for complying with the Explosion Proof Criteria of the Electrolysis (수전해설비의 전기방폭 기준 만족을 위한 비방폭화 방안에 관한 연구)

  • YongGyu, Kim;ShinTak, Han;JongBeom, Park;ByungChan, Kong;GyeJun, Park;SeungHo, Jung
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.6
    • /
    • pp.65-75
    • /
    • 2022
  • Recently, the possibility of fire and explosion due to hydrogen leakage and the resulting risk are increasing since the operating pressure of the electrolysis increases. This study performed the hazardous area classification in accordance with KS C IEC 60079-10-1 and KGS GC101 in consideration of the general operating conditions of the electrolysis. In addition, in order to achieve a To Non-hazardous, an appropriate ventilation rate was estimated to maintain a concentration of less than 25 % of the lower explosive limit. As a result, it was reviewed that the electrolysis is classified as an hazardous area when only natural ventilation is applied, and a huge amount of ventilation is required to classify it as a non-hazardous area.