• Title/Summary/Keyword: Explosive Charge

Search Result 121, Processing Time 0.021 seconds

Case Study on the Explosive Demolition of Steel Truss Bridge using Charge Container for Cutting Structural Steel (강재 절단용 장약용기를 이용한 철골 교량 발파해체 시공사례)

  • Park, Hoon;Suk, Chul-Gi;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.36 no.1
    • /
    • pp.20-33
    • /
    • 2018
  • A locally damaged structure is a structure that cannot be reused due to having parts that have lost their structural function as a result of abnormal load across the interior or exterior of the structure. The causes of the abnormal load occurrences can be classified into natural disaster and artificial disaster. Locally damaged structures caused by this abnormal load have risk factors that may lead to the possibility of additional secondary collapses, so such structures require immediate and complete dismantling. The case presented in this study involves the application of explosive demolition to a steel truss structured bridge in the Philippines that was damaged due to construction failures and the hurricane. Although shaped charges were needed in explosive demolitions, difficulties in locally obtaining such material. So, we made a charge container to charging of emulsion explosive during the explosive demolition. The explosive demolition resulted in the vertical free fall of the mid-section of the bridge and the free fall rotating of the both end section of the bridge. The neighboring posts and bridge piers did not show signs of damages, while post-demolition fragmentation of removed parts was found to be satisfactory.

The Comparison of the Ground Vibration Velocity by Dynamite and Finecker Blasting (다이너마이트와 미진동파쇄기 발파에 의한 지반진동속도 비교)

  • Kim, Il-Jung
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.39-47
    • /
    • 1996
  • The results of the regression analysis and comparative study between 120 vibration events by dynamite blasting and 68 vibration events by finecker blasting which were monitored in the test blasting are as follows: The ground vibration velocity of dynamite blasting of 0.12 kg charge weight per delay at 7.4 m above the explosive is higher than that of finecker blasting of 0.96 kg charge weight per delay. In the case of 0.12 kg charge weight per delay, the ground vibration velocity of finecker blasting is equal to 5.5% of that of dynamite blasting at the 10 m distance from explosive. The decrement of ground vibration velocity of dynamite blasting of above 0.12 kg charge weight per delay is larger than that of finecker blasting of below 0.96 kg charge weight per delay. The rate of ground vibration velocity of the finecker blasting to that of dynamite blasting decreases with the distance from explosives, but increases with the decrease of charge weight per delay. The increment of ground vibration velocity of finecker blasting is less than that of dynamite blasting with the increase of charge weight per delay at the same distance from explosives. Under the condition of the constant critical ground vibration velocity or use the same charge weight per delay, the blasting working by finecker rather than by dynamite is able to be performed at the nearer place to structures.

  • PDF

Blast Design for Explosive Demolition of Concrete Foundation (기초콘크리트 구조물의 발파해체를 위한 발파설계)

  • Park, Hoon;Park, Hyoung-Ki;Suk, Chul-Gi;Yi, Young-Seop;Kaneko, Katsuhiko
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • With the deterioration and functional loss of structures, there is an increasing demand for demolition and various demolition technologies have been developed. In case of a large-scale concrete foundation, application of some mechanical demolition techniques is limited because of the structural characteristics, and explosive demolition or explosive demolition combined with mechanical demolition is applied recently due to the effect to the surrounding environment by the ground vibration. In this study, we compared peak particle velocity of ground vibration depending on average fragment size in case of explosive demolition design for large-scale concrete foundation using the relation among specific charge, charge constant and transmitting medium constant as well as the relation between average concrete fragment size and specific charge.

An Evaluation of Cutting Performance for Cutting Structural Steel using Charging Container (장약용기를 이용한 강재 절단 성능 평가)

  • Park, Hoon;Noh, You-Song;Suk, Chul-Gi
    • Explosives and Blasting
    • /
    • v.38 no.2
    • /
    • pp.13-21
    • /
    • 2020
  • The shaped charge was used in explosive demolition of a steel frame structure, but it was often not used because it was limited to use and impossible to supply at domestic and overseas. Existing linear shaped charge did not have sufficient cutting performance to cut steel frame structures with a huge scale and thick steel plate. To solve these problems, we produced a device that could generate metal jets using industrial explosives of high detonation velocity and pressure. In this study, we made a charging container of three types which applicable to explosive demolition of steel frame structures. The experiment of cutting performances was carried out to evaluate the effect of cutting of charging containers on the various thicknesses of the H-beam and steel plate. As a result of the experiment, sufficient cutting performance was confirmed.

Analysis of Blast Wave of Explosives by the Scaling Law (축척법에 의한 화약 폭풍과 분석)

  • Park, Jung-Su;Kim, Sung-Ho;Lee, Keun-Deuk;Lee, Jai-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.120-129
    • /
    • 2005
  • To analyze a blast effect of developed explosives, three different kinds of aluminized tastable explosives and melted cast explosive TNT were used. Conventional explosive TNT was used as a reference. Each tested explosive charge of 340mm diameter spherical type was initiated at the charge center with DXD-65(${\sim}750g$) booster and RP-87 EBW detonator. Thirteen piezo type pressure sensors were located at a range from 4 to 50m away from the charge. From the blast wave profiles, we calculated a peak blast pressure and impulse of the explosion. The calculated pressures and in pulses were converted to TNT Equivalent Weight(TEW) factor by the scaling ]aw method. The average TEW factors based on the blast pressure of TX-01, TX-02, TX-03, TX-04 were 1.298, 1.05, 1.266, 1.274 and the average TEW factors based on impulse were 1.504, 1.686, 1.640, 1.679. From the results, we concluded that TEW factors based on blast pressure and based on impulse of aluminized explosives were superior to TNT. This results are owing to the high contents of aluminum in formulations.

Parameter Analysis of Swedish Bench Blast Design using Robust Design Method (강건설계법을 이용한 스웨덴식 벤치발파의 설계 인자 분석)

  • Yang, Hyung-Sik
    • Explosives and Blasting
    • /
    • v.31 no.2
    • /
    • pp.1-5
    • /
    • 2013
  • Parameters of Swedish bench blast design was analyzed by robust design method. Orthogonal array which is adopted in this study was $L_9(3^4)$ and the parameters were hole diameter, explosive type, hole inclination and rock factor of 3 levels. Result of analysis showed that maximum and minimum burden are most affected by hole diameter, followed by explosive type, rock type and inclination of hole. Parameters affecting specific charge are in the order of rock type, explosive type and to specific drilling are hole diameter and explosive type. Cost analysis showed that robust design is capable of parameter optimization.

Experimental Study on the Flyer Velocity in Explosive Welding (폭발용접에서 부재의 충돌속도에 관한 실험적 연구)

  • 문정기;김청균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1423-1430
    • /
    • 1993
  • One of the most important parameters for explosive welding is flyer velocity $V_p$, which principally depends on momentum caused by detonation of explosive. And close dependency with other parameters such as detonation velocity $V_D$, dynamic angle $\beta$, charge ratio R, flyer thickness $t_f$ and stand-off distance d, should be taken accounts for welding design. This paper describes, as a result of experiment, an empirical equation related to relation between $V_p$/$V_D$ and R. The flyer velocity which is estimated by $V_{p}=0.284{\times}R^{0.593}$or $V_{p}=\sqrt[0.2]{2E_G}{\times}R^{0.593}$ can be used in ordinary experiments. And the calculated values of the flyer velocity exhibit better accuracy than those of other investigators.

A Study on Dispersed Media Formation of Hydrocarbon Fuel by an Explosive Burster (화약 폭발에 의한 탄화수소계 연료의 분산매질 형성에 관한 연구)

  • Yoo, Jae Hun
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.33-40
    • /
    • 2016
  • Liquid fuel can be easily exploded and release more energy of detonation than conventional explosives because it has different explosion mechanism. In order to analyze dispersion characteristics of liquid fuel for the safety purpose, two tests are conducted. First, pre-test, which is a computer simulation, is carried out by a software called ANSYS AUTODYN to eliminate the effect of a canister that usually causes irregular dispersion of the fuel. Second, field test is performed to find out the amount and density effect of bursting charge. High speed cameras are installed in front of the canister to visualize the mechanism. Velocity, area and radius of the dispersed cloud are measured by image processing software, these are shown that the amount of bursting charge affects cloud velocity and area but density is not a significant factor of cloud formation.

Development Study on Explosive Bellows Using BP/MTV Gas Generator (BP/MTV 가스발생제를 이용한 화약 벨로우즈 개발 연구)

  • Song, Kigeun;Kim, Yongseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.104-111
    • /
    • 2017
  • A new explosive bellows, which has a diameter of 8.0 mm and a length of 25.4 mm, was developed for a warhead fuze. The new explosive bellows delivers a thrust of 4.5 kgf over a stroke of 25.4 mm. A new gas generator containing BP/MTV ignition charge was also developed and the output test equipment, which measures the length of spring compressed by the function of explosive bellows, was also devised. In order to find out that the new explosive bellows meets the design requirements, the sensitivity tests and output tests were conducted. The test results show that the new explosive bellows meets the requirements and can be applicable to a warhead fuze.

Numerical Simulation on the Steel Plate Cutting Performances of Bent-Shaped Charge Holder Blasting (드로잉 가공 성형폭약용기의 강판절단성능에 관한 수치해석적 연구)

  • Min, Gyeong-Jo;Park, Hoon;Oh, Se-Wook;Park, Se-Woong;Suk, Chul-Gi;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.36 no.3
    • /
    • pp.19-28
    • /
    • 2018
  • Locally damaged structures caused by earthquake or extraordinary external forces have been required to rapidly be dismantled because of its possibility of additional collapses. Particularly, steel frame structures were demolished by the shaped charge blasting method. Recently a research suggested a shape charge blasting technique which uses bent-shaped charge holder of copper plate and emulsion explosive charge to cut thick steel plates. This study simulated the cutting performance of the bent-shaped charge holder with considering types of explosives, thickness of copper liner and stand-off distances using LS-DYNA software. The shape charge blasting test of a 25mm thickness steel plate were used to calibrate the input parameters of the numerical models. The penetration depth and penetration width were analysed with different types of explosives, thickness of copper liner and stand-off distances.