• Title/Summary/Keyword: Explosion work

Search Result 143, Processing Time 0.03 seconds

Characteristics of Particle Size Distributions Generated in the Vicinity of Building Blasting Demolition Sites (발파해체현장에서 발생하는 순간분진의 입경분포 특성)

  • Lee, Kyoung-Hee;Kim, Hyo-Jin;Park, Chan-Gyu;Ko, Kwang-Baik
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2009
  • In building demolition work, major dust-generating activities are blasting concrete and rock. The aim of this study was to find the characteristic of particle size of dusts which were generated during building demolition work using explosion. The DustMate of the Turnkey-Instruments Ltd. was used for particulate size-selective sampling of the four sites. TSP(Total Suspended Particle), PM10(Particle Matter $10{\mu}m$), PM2.5(Particle Matter $2.5{\mu}m$), and PM1.0(Particle Matter $1.0{\mu}m$) were measured during building demolition work using explosion. The large particulate (higher than the diameter $10{\mu}m$) showed to be higher than 50%. The particulate ranged from $10{\mu}m\;to\;2.5{\mu}m$ showed about 30-40%. PM2.5 was not scarcely detected in the samples collected for building demolition work using explosion. We conclude that the dust generated during building demolition work using explosion has not most respirable particulate.

The Characteristics of the Fatal Accidents Caused by Fire, Explosion and Asphyxiation during Welding and Flame Cutting in the Manufacturing Industry (제조업에서의 용접·용단 작업 중 화재·폭발·질식 사망사고 특성)

  • Seo, Dong-Hyun;Han, Ou-Sup;Lee, Keun-Won
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.21-27
    • /
    • 2019
  • Many accidents have been occurring during welding and flame cutting work related to maintenance and repair as the domestic manufacturing facilities gradually become decrepit. However, it is not easy to find the accurate statistics and analysis data on accidents occurring during welding or flame cutting operations related to maintenance and repair of machinery and equipment. Therefore, in this study, the fatal accident cases of fire/explosion and asphyxiation that occurred during the welding and flame cutting work in the manufacturing industry were collected and their characteristics were analyzed. Then, we tried to find the connection of the accidents according to the machinery/equipment and the work content, and to provide the materials and measures that can be used to prevent the similar accidents. We collected 329 cases of the fatal accidents related to fire/explosion and leakage/contact of chemical substances in the domestic manufacturing industry during the last 10 years (2008 ~ 2017). Among them, 72 accidents occurred during welding or flame cutting were extracted and the related reports were investigated whether they occurred during usual work or unusual work. Also, the machinery/equipment and the work content related to the accidents were classified and analyzed based on the criteria. The analysis results showed that 31 cases of the fire/explosion accidents occurred during usual work and 32 cases during unusual work, and it was found that 9 cases of asphyxiation death occurred during usual work. Then, from the analysis results, the connections of the machinery/equipment and the work contents related to the accidents were schematized into a accident tree.

Investigation of the LPG Gas Explosion of a Welding And Cutting Torch at a Construction Site

  • Lee, Su-kyung;Lee, Jung-hoon;Song, Dong-woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.811-818
    • /
    • 2018
  • A fire and explosion accident caused by a liquefied petroleum gas (LPG) welding and cutting torch gas leak occurred 10 m underground at the site of reinforcement work for bridge columns, killing four people and seriously injuring ten. We conducted a comprehensive investigation into the accident to identify the fundamental causes of the explosion by analyzing the structure of the construction site and the properties of propane, which was the main component of LPG welding and cutting work used at the site. The range between the lower and upper explosion limits of leaking LPG for welding and cutting work was examined using Le Chatelier's formula; the behavior of LPG concentration change, which included dispersion and concentration change, was analyzed using the fire dynamic simulator (FDS). We concluded that the primary cause of the accident was combustible LPG that leaked from a welding and cutting torch and formed a explosion range between the lower and upper limits. When the LPG contacted the flame of the welding and cutting torch, LPG explosion occurred. The LPG explosion power calculation was verified by the blast effect computation program developed by the Department of Defense Explosive Safety Board (DDESB). According to the fire simulation results, we concluded that the welding and cutting torch LPG leak caused the gas explosion. This study is useful for safety management to prevent accidents caused by LPG welding and cutting work at construction sites.

Thermodynamic Analysis of Vapor Explosion Phenomena (증기폭발 현상의 열역학적 해석)

  • Bang, Kwang-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.265-275
    • /
    • 1993
  • A vapor explosion has been a concern in nuclear reactor safety due to its potential for a destructive mechanical energy release. In order to properly assess the hazard of a vapor explosion, it is necessary to accurately estimate the conversion efficiency of the thermal energy to mechanical energy. In the absence of a complete model to determine the explosive energy yield, one may have to rely on a simpler upper bound estimate such as a thermodynamic model. This paper discusses various thermodynamic models and presents a clarification of each model in their mathematical formulation and the thermodynamic work conversion. It is shown that the work release in the shock adiabatic model of Board and Hall is essentially equal to that of Hicks-Menzies thermodynamic model. The effect of coolant void fraction on the explosion efficiency is also predicted based on these thermodynamic models. Finally, the Hicks-Menzies model is modified to account for the chemical reaction between a metallic fuel and water and the resultant effects on the explosion expansion work are discussed.

  • PDF

A Study on Physicochemical Characteristics of Hydrogen Gas Explosion (수소가스 폭발의 물리화학적 특성 연구)

  • Jo, Young-Do
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2012
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing significantly greenhouse gas emissions, but the explosion safety issues associated with hydrogen applications need to be investigated and fully understood to be applicable as the carrier. The risk associated with a explosion depends on an understanding of the impacts of the explosion, particularly the pressure-time history during the explosion. This work provides the effects of explosion parameters, such as specific heat ratio of burned and unburned gas, equilibrium maximum explosion pressure, and burning velocity, on the pressure-time history with flame growth model. The pressure-time history is dominantly depending on the burning velocity and equilibrium maximum explosion pressure of hydrogen-air mixture. The pressure rise rate increase with the burning velocity and equilibrium maximum explosion pressure. The specific heat ratio of unburned gas has more effect on the final explosion pressure increase rate than initial explosion pressure increase rate. However, the specific heat ratio of burned gas has more influence on initial explosion pressure increase rate. The flame speeds are obtained by fitting the experimental data sets. The flame speeds for hydrogen in air based on our experimental data is very low, making a transition from deflagration to detonation in a confined space unlikely under these conditions.

Spark Plasma Sintering of the Ni-graphite Composite Powder Prepared by Electrical Explosion of Wire in Liquid and Its Properties

  • Thuyet-Nguyen, Minh;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.27 no.1
    • /
    • pp.14-24
    • /
    • 2020
  • In this work, the electrical explosion of wire in liquid and subsequent spark plasma sintering (SPS) was introduced for the fabrication of Ni-graphite nanocomposites. The fabricated composite exhibited good enhancements in mechanical properties, such as yield strength and hardness, but reduced the ductility in comparison with that of nickel. The as-synthesized Ni-graphite (5 vol.% graphite) nanocomposite exhibited a compressive yield strength of 275 MPa (about 1.6 times of SPS-processed monolithic nickel ~170 MPa) and elongation to failure ~22%. The hardness of Ni-graphite composite had a value of 135.46 HV, which is about 1.3 times higher than that of pure SPS-processed Ni (105.675 HV). In terms of processing, this work demonstrated that this processing route is a novel, simple, and low-cost method for the synthesis of nickel-graphite composites.

Development of Algorithm to Predict the Superheat-limit Explosion(SLE) Conditions of LNG Using Continuous Thermodynamics (연속열역학을 이용한 액화천연개스(LNG)의 과가열약체 폭발현상 예측에 대한 연구)

  • Shin, Goun-Soup;Kwon, Yong-Jung
    • Journal of Industrial Technology
    • /
    • v.15
    • /
    • pp.5-13
    • /
    • 1995
  • Natural gas, which is getting more important as a fuel, should be liquefied and shipped in a special tank. During transportation, a spill of liquefied natural gas(LNG) could occur by a collision or even an accident. As a result, violent explosion called the superheat-limit explosion(SLE) can take place in some cases, unexpectedly. Such explosion may result from the formation of a superheated liquid which has attained the superheat-limit temperature when hot(water) and cold(LNG) liquids come into contact. Natural gas mixtures can be considered as discrete light components plus continuous heavy fractions where several continuous distribution function can be adopted. This work is aiming at prediction of the superheat-limit explosion condition by suing continuous thermodynamics development of algorithm to predict.

  • PDF

Effect of Dynamite Explosion Work Noise on Behavior of Israeli Carp, Cyprinus carpio in the Cage of Aquaculture (양식 향어의 행동에 미치는 발파작업 소음의 영향에 관한 연구)

  • SHIN Hyeon Ok
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.4
    • /
    • pp.348-355
    • /
    • 2000
  • This paper described the relationship between the behavior of the Israeli carp, Cyprinus carpio and the environmental noise level due to the dynamite explosion work. The experiment was conducted in the cage ($L10{\times}W4{\times}D4 m$) of aquaculture located at Chungjoo Lake, Chechon, in 1997. The fish trajectory was obtained by the telemetry system in which a pulsed ultrasonic pinger ($50 kHz, {\phi}16{\times}L70 mm$) attached to the fish was tracked three dimensionally, and the underwater noise levels were measured. The results of the study were as follows: 1. The underwater noise levels in the normal blasting measured at a distance of 400 m from the source of noise increased by $40 dB (re 1 {\mu}Pa)$ compared to the levels before explosion. The dominant frequency and the increased power spectrum level of the underwater noise by the explosion work were $75 to 100 Hz and 22.9 to 35.3 dB$, respectively. 2. The underwater noise levels in the test blasting measured at a distance of 350 m from the source of noise increased by average $49.5 dB (re 1 {\mu}Pa)$compared to the levels before explosion. 3. The swimming area of the fish was reduced with the time after explosion, and after more than one hour the fish represented the similar swimming area and behavior to the status of right before explosion. 4, The swimming depth layer of the fish was most of the case at the sea surface less than 1,0 m except during explosion or right after of it. But the fish swam downward when an external stimulus like the explosion noise was given to the fish. 5. The average swimming speeds of the fish before, during and after the works were about 1.2 times, 1.9 times and 1.0 times of the body length, respectively, and the speed of the fish with explosion was faster 1.6 times than the speed without of that. Consequently, the explosion noise levels measured by this study were sufficiently high to affect the fish, and the heavy shock by the explosion works could produce a considerable unfavorable effects to the fish.

  • PDF

A Study on the Management Plan through Performance Maintenance Analysis of Explosion-proof Facilities (방폭설비 성능유지 실태분석을 통한 관리방안 연구)

  • Kwon, Yong Jun;Byeon, Junghwan
    • Journal of the Korean Society of Safety
    • /
    • v.35 no.2
    • /
    • pp.8-16
    • /
    • 2020
  • In Article 311 of the Regulation on Occupational Safety and Health Standards requires the use of Korean Industrial Standards Act in accordance with the Industrial Standardization Act. However, the classification, inspection, maintenance, design, selection, and installation of explosion hazard locations for explosion and explosion prevention and internalization of 'safety' in the performance maintenance phase of electrical machinery and equipment There is no technical and institutional management plan for remodeling and alteration. Analysis of actual conditions and problems related to the installation, use, and maintenance of explosion-proof equipment, comparative analysis of domestic and international technical standards and systems, technical, institutional and administrative systems and systems related to installation, use, and maintenance of explosion-proof equipment, technical personnel and qualifications, etc. It is to propose legislation, system improvement, and technical standard establishment related to the maintenance of explosion-proof facility performance through improvement of the necessity and feasibility study for establishment of the legal status of the management site and management plan. As technical measures, KS standard revision (draft), KOSHA guide (draft) and explosion-proof facility performance maintenance manual were presented. In addition, the institutional management plan proposed the revised rule on occupational safety and health standards, the revised rule on the restriction of employment of hazardous work, and the manpower training program related to the maintenance of explosion-proof facilities and the qualification plan. Enhance safety at the installation, use, and maintenance stage of explosion-proof structured electrical machinery. It is expected to be used to classify explosion hazards, select related equipment, and to update and standardize standards related to installation, use and maintenance.

A Study on the Improvement of System to Prevent Accidents during Welding and Melting Operations (용접·용단 작업 중 사고 예방을 위한 제도 개선 연구)

  • Han, Kyung-Su;Cho, Guy-Sun;Kim, Young-Se;Kim, Byung-Jik;Park, Ju-Yeong;Park, Gyo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.76-81
    • /
    • 2020
  • Recently, fire and explosion accidents caused by sparks scattered during welding and melting work in the work place where flammables are present. The causes of such fire accidents are mostly non-compliance with basic safety rules such as the removal of hazardous goods and the prevention of sparks scattering. It is strongly recommended to revise Industrial Safety and Health Act. This study analyzes the fire and explosion accidents in the work of firearms, such as welding and melting work, and analyzes the causes from a system perspective, and proposes an improvement plan for the system such as expanding the number of fire monitors, pre-approval of fire risk work, and intensifying fire prevention safety education.