• Title/Summary/Keyword: Explosion experiments

Search Result 143, Processing Time 0.024 seconds

A Study on Explosion and Fire Risk of Lithium-Ion and Lithium-Polymer Battery (리튬이온 및 리튬폴리머 배터리의 폭발과 화재 위험성에 관한 연구)

  • Lee, Bum Joo;Choi, Gyeong Joo;Lee, Sang Ho;Jeong, Yeon Man;Park, Young;Cho, Dong Uk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.855-863
    • /
    • 2017
  • Because Li-ion battery and Li-Polymer battery have high-energy storage density, they are used for various electronic devices such as electronic cigarette, electronic bicycle, drone, second battery, even golf cart and electronic car. Recently, however, battery explosion is sometimes occurring on electronic devices using Li-ion battery and is becoming serious as bodily harm is breaking out due to explosion. For this, this paper described the Li-ion Battery's operating principles and verified the cause of explosion by overload tests caused by the high-energy storage density. According to the these experiments, we conducted a study to develope scanning techniques of fire and safety measures.

Public Nuisance and Aggregate Assessments of the Dangri Crushed Stone Quarry Busan, Korea. (부산직할시 산양사리 당리석산의 채석공해 및 쇄석골재 평가연구)

  • 김항묵
    • Journal of the Korean Professional Engineers Association
    • /
    • v.16 no.3
    • /
    • pp.41-53
    • /
    • 1983
  • The Dangri Crushed Stone Quarry is located in Dangridong, Busan City, and around the estuary of the Nagdong River. The quarry is considered to be a very promised one in the urban area from the standpoints of the assessment of the aggregate rank, the environmental impacts and the transportation distance. The crushed stones for aggregate of the quarry marks the higher rank in the gravity, the absorption ratio, the abrasion ratio, and the stability in comparison with the JISA 5005. The basement vibrations of the residential section in the vicinity of the quarry, which are arised by the millisecond blasting at the quarry site using the gelatin dynamites less than 39kg in weight, are measured to assess the vibration nuisance. The values of acceleration and the magnitudes are less than eight gals and O on the Richter scale respectively, the vibration nuisance thus can be ignored in such scales of the experiments. The traffic vibrations of the residential section are slightly susceptible. In the experiments, the traffic vibrations appears to be sensibler to the basement than the explosion vibration. The explosion noises in the experiments are not checked not only on the RION Sound Level Meter but also to our ears. The values of traffic noises also are in the safety values of the noise nuisance. The crush dust suspends in the air toward the upper valley in the opposite side of the residential area because of the influences of the sea breeze and the valley wind in the daytime, and the monsoon and the topographic disposition. the dust nuisance thus would not be remained in problem. The quarry is operated in the daytime only. The traffic dust in the residential area will be reduced by the faultless pavement and the careful driving. The elaborate survey on the ridges and peaks surrounded the quarry is recommended to prevent in advance the accidents of the rock slide. Moreover, it is required to make an advisory committee to develop the industry and to save the techniques. The most important matter is the accomodation between the attitude of the enterprising man for the social responsibility to the public nuisance and the cooperative spirit of the inhabitants for the industry.

  • PDF

3D Explosion Analyses of Hydrogen Refueling Station Structure Using Portable LiDAR Scanner and AUTODYN (휴대형 라이다 스캐너와 AUTODYN를 이용한 수소 충전소 구조물의 3차원 폭발해석)

  • Baluch, Khaqan;Shin, Chanhwi;Cho, Yongdon;Cho, Sangho
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.19-32
    • /
    • 2022
  • Hydrogen is a fuel having the highest energy compared with other common fuels. This means hydrogen is a clean energy source for the future. However, using hydrogen as a fuel has implication regarding carrier and storage issues, as hydrogen is highly inflammable and unstable gas susceptible to explosion. Explosions resulting from hydrogen-air mixtures have already been encountered and well documented in research experiments. However, there are still large gaps in this research field as the use of numerical tools and field experiments are required to fully understand the safety measures necessary to prevent hydrogen explosions. The purpose of this present study is to develop and simulate 3D numerical modelling of an existing hydrogen gas station in Jeonju by using handheld LiDAR and Ansys AUTODYN, as well as the processing of point cloud scans and use of cloud dataset to develop FEM 3D meshed model for the numerical simulation to predict peak-over pressures. The results show that the Lidar scanning technique combined with the ANSYS AUTODYN can help to determine the safety distance and as well as construct, simulate and predict the peak over-pressures for hydrogen refueling station explosions.

Understanding Explosive Stellar Events Using Rare Isotope Beams

  • Chae, Kyungyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.66.1-66.1
    • /
    • 2017
  • Nuclear reactions in explosive stars such as novae, X-ray bursts, and supernovae are responsible for producing many of the elements that make up our world. Exotic nuclei not normally found on earth can play an important role in these events due to the extreme conditions that occur in the explosion. A frontier area of research involves utilizing beams of radioactive nuclei to improve our understanding of these explosions and the implications on cosmic element production. At the future radioactive ion beam facility of Korea, RAON, we will measure astrophysically important reactions using exotic beams to probe the details of cosmic events. Details of RAON and possible day-1 experiments at the facility will be presented.

  • PDF

Antioxidant and Safety Test of Natural Extract of Quercus mongolica (신갈나무 추출물의 안전성 및 항산화성)

  • Jung, Ji-Young;Yang, Jae-Kyung;Lee, Won-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.116-125
    • /
    • 2017
  • In this study, natural extract of Ouercus mongolica by steaming explosion treatment were tested for antioxidant activity and safety. To determine the antioxidative properties of the hot water extracts, experiments were carried out by dividing into four groups (10 mice per group) of four-week-old B6C3F1 male mice from Air Logistics, Japan. As safety test, cell viability test, oral toxicity test were done. The activity of peroxidase was increased by more than 29% in the group treated with hydrothermal extract. From 4 kinds of safety tests, toxicity was not observed. From experimental results, natural extract of Ouercus mongolica by steaming explosion treatment showed superb safety and antioxidant effect.

Evaluation of Impact Damage Behavior of a Reinforced Concrete Wall Strengthened with Advanced Composite Materials (복합신소재로 보강된 철근 콘크리트 구조물의 충돌손상거동 평가)

  • Noh, Myung-Hyun;Lee, Sang-Youl
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with advanced composite materials (ACM) are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a ACM-strengthened RC wall structure.

  • PDF

Characteristics of Auto-ignition and Micro-explosion for Array of Emulsion Droplets (유화액적 배열에서의 자발화와 미소폭발의 특성)

  • Jeong, In-Cheol;Lee, Kyung-Hwan;Kim, Jae-Soo
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.113-119
    • /
    • 2007
  • The auto-ignition characteristics and combustion behaviors of one-dimensional array of water-in-fuel droplets suspended in a high temperature chamber have been investigated experimentally with various droplet spacing and number of droplets. The fuels used were pure n-decane and emulsified n-decane with water contents varied from 10% to 30%. All experiments have been performed at 920 K under the atmospheric pressure. The number of droplets in an array were fixed as 3 or 5 and its spacing was varied from 3 mm to 7 mm by 1mm interval. The imaging technique with a high-speed camera has been adopted to measure the ignition delay and flame life time. The micro-explosion behaviors were also observed. As the droplet array sparing increased, the ignition delay also increased regardless of water contents. However, the life time of droplet array decreased as the droplet spacing increased. The full combustion time in array of 3 droplets was found to be longer than that for 5 droplets case due to the longer ignition delay.

Evaluation of Pressure History due to Steam Explosion (증기폭발에 의한 압력이력 평가)

  • Kim, Seung Hyun;Chang, Yoon-Suk;Song, Sungchu;Hwang, Taesuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.355-361
    • /
    • 2014
  • Steam explosions can be caused by fuel-coolant interactions resulting from failure of the external vessel cooling system in a new nuclear power plant. This can threaten the integrity of structures, including the nuclear reactor and the containment building. In the present study, an improved technique for analyzing the steam explosion phenomenon was proposed on the basis of previous research and was verified by simulations involving alumina experiments. Also, the improved analysis technique was applied to determine the pressure history of the reactor cavity in accordance with postulated failure locations. The results of the analysis revealed that the effects of vessel side failure are more serious than those of vessel bottom failure, with approximately 70% higher maximum pressure.

Analysis of impact damage behavior of GFRP-strengthened RC wall structures subjected to multiple explosive loadings (복합 폭발하중을 받는 GFRP 보강 RC 벽체 구조물의 비선형 충격 손상거동 해석)

  • Noh, Myung-Hyun;Lee, Sang-Youl;Park, Tae-Hyo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1033-1036
    • /
    • 2008
  • In this paper, the analysis of impact damage behavior of a reinforced concrete structure that undergoes both a shock impulsive loading and an impact loading due to the air blast induced from an explosion is performed. Firstly, a pair of multiple loadings are selected from the scenario that an imaginary explosion accident is assumed. The RC structures strengthened with glass fiber reinforced polymer (GFRP) composites are considered as a scheme for retrofitting RC wall structures subjected to multiple explosive loadings and then the evaluation of the resistant performance against them is presented in comparison with the result of the evaluation of a RC structure without a retrofit. Also, in order to derive the result of the analysis similar to that of real explosion experiments, which require the vast investment and expense for facilities, the constitutive equation and the equation of state (EOS) which can describe the real impact and shock phenomena accurately are included with them. In addition, the numerical simulations of two concrete structures are achieved using AUTODYN-3D, an explicit analysis program, in order to prove the retrofit performance of a GFRP-strengthened RC wall structure.

  • PDF