• Title/Summary/Keyword: Explosion damage

Search Result 316, Processing Time 0.026 seconds

Development of a Simplified Formula for the Damage Radius of a Naval Ship due to an AIR EXplosion (AIREX) (공기 중 폭발에 의한 함정의 손상반경 간이 계산식 개발)

  • Choi, Wan-Soo;Ruy, Won-Sun;Lee, Hyun Yup;Shin, Yun-Ho;Chung, Jung-Hoon;Kim, Euiyoung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.57 no.4
    • /
    • pp.207-212
    • /
    • 2020
  • To decide a separation distance of the redundant vital equipment in a naval ship, the damage radius due to an aerial explosion should be estimated. In this research, a simplified formula for the damage radius has been developed by using existing empirical formulae for reflected shock pressure and shock lethality value of equipment. As a numerical example, the damage radius for a typical pump aboard a naval ship has been calculated by the developed formula and compared with the results calculated by Measure of Total Integrated Ship Survivability (MOTISS) which is one of survivability analysis codes verified, validated and accredited by the US Navy. Also, comparison with the results calculated by existing other simplified formulae has been made.

A Study on Simple Calculation Method of Survival Time for Damaged Naval Ship Due to the Explosion (폭발에 의해 손상된 함정의 생존시간 간이계산법 연구)

  • Kim, Jae-Hyun;Park, Myung-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.10 no.4
    • /
    • pp.211-217
    • /
    • 2007
  • Due to advanced new weapons and changes in the combat environment, survivability improvement methods for naval ship design have continuously evolved. Surface naval ships are easily detected by the enemy and, moreover, there are many attack weapons that may be used against surface naval ships. Therefore, it is important for modem naval ships, especially combat naval ships, to ensure survivability. In order to design a naval ship considering survivability, the designers are required to establish reasonable attack scenarios. An explosion may induce local damage as well as global collapse of the ship. Therefore, possible damage conditions should be realistically estimated at the design stage. In this study, an ALE technique was used to simulate the explosion analysis, and the survival capability of damaged naval ships was investigated. Especially, the author have establish the simple method of estimation of survival time for damaged naval ships.

  • PDF

Underwater explosion and its effects on nonlinear behavior of an arch dam

  • Moradi, Melika;Aghajanzadeh, Seyyed Meisam;Mirzabozorg, Hasan;Alimohammadi, Mahsa
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.333-351
    • /
    • 2018
  • In the present paper, the behavior of the Karaj double curvature arch dam is studied focusing on the effects of structural nonlinearity on the responses of the dam body when an underwater explosion occurred in the reservoir medium. The explosive sources are located at different distances from the dam and the effects of the cavitation and the initial shock wave of the explosion are considered. Different amount of TNT are considered. Two different linear and nonlinear behavior are assumed in the analysis and the dam body is assumed with and without contraction joints. Radial, tangential and vertical displacements of the dam crest are obtained. Moreover, maximum and minimum principal stress distributions are plotted. Based on the results, the dam body responses are sensitive to the insertion of joints and constitutive model considered for the dam body.

Simulation Study for Electromagnetic Pulse by High-Altitude Nuclear Explosion (고고도핵폭발 전자기펄스 피해 분석을 위한 전산모사 연구)

  • Kah, Dong-Ha;Shim, Woosup
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.822-828
    • /
    • 2015
  • This paper describes computer simulation program of high-altitude electromagnetic pulse (HEMP). The HEMP is produced by the gamma rays form high-altitude nuclear explosion. The gamma rays generate a current of compton electron that leads to the production of electromagnetic fields. In case of high altitude nuclear burst, the electrical fields at the earth's surface are strong enough to be damaged for electrical and electronic device over a very much larger area. Therefore, national infrastructure will be serious damage such as power grid and communication network. In this paper introduce simulation program for calculation of HEMP and present to simulation study results of high altitude nuclear explosion experiment from U.S. and U.S.S.R.

Behavior of Precast Prestressed Concrete Panels subjected to Blast Loading (폭발 하중을 받는 프리캐스트 프리스트레스트 콘크리트 패널의 거동 평가)

  • Kang, Joo-Won;Jo, Eunsun;Kim, Min Sook;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.1
    • /
    • pp.95-102
    • /
    • 2015
  • The purpose of this study is to establish and examine the analytical methods based on FEA to predict the behavior of the precast prestressed concrete panels under blast loading. The precast prestressed concrete structures are on the rise, but there is little research in this regard explosion. In this paper, we set the variable to the three models. TNT 500 kg was an explosion in the standoff-distance 3m. In conclusion, the precast models damage was concentrated in the bonded portion. The concrete panels after an explosion occurred continuously deformed. But the including prestressed panels deformation occurs only at the beginning of the explosion were able to see the results.

Selection of Release Scenario and Consequence Analysis for Gas Explosion by Pipe Release (배관누출에 의한 가스 폭발사고에서 누출 시나리오 선정 및 사고결과 분석)

  • Kim, Tae-Ok;Lee, Hern-Chang;Ryoo, Jun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.4 s.33
    • /
    • pp.52-62
    • /
    • 2006
  • In this study, we tried to propose a selection method of release scenarios and a method of consequence analysis at a gas explosion by pipe release. Thus, release rates, damage areas of the facilities, and fatality areas were estimated and analyzed at various release conditions(temperature, pressure, release material, etc). As a results, we could conclude that the rupture was the worst case of release scenarios, and at release rates and damage areas were better estimated by the weighted average method considering a generic failure frequency of the release hole than by an arbitrary selection of the release hole.

  • PDF

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

Assessment of the Applicability of Vapor Cloud Explosion Prediction Models (증기운 폭발 예측 모델의 적용성 평가)

  • Yoon, Yong-Kyun
    • Explosives and Blasting
    • /
    • v.40 no.3
    • /
    • pp.44-53
    • /
    • 2022
  • This study evaluates the applicability of the TNT Equivalency Method, Multi-Energy Method, and Baker-Strehlow-Tang (BST) Method, which are blast prediction models used to determine the overpressure of blast wave generated from vapor cloud explosion. It is assumed that the propane leaked from a propane storage container with a capacity of 2000 kg installed in an area where studio houses and shopping centers are concentrated causes a vapor cloud explosion. The equivalent mass of TNT calculated by applying the TNT Equivalency Method is found to be 4061 kg. Change of overpressure with the distance obtained by the TNT Equivalency Method, Multi-Energy Method, and BST Method is rapid and the magnitude of overpressure obtained by the TNT Equivalency Method and BST method is generally similar within 100 m from explosion center. As a result of comparing the overpressure observed in the actual vapor cloud explosion case with the overpressure obtained by applying the TNT Equivalent Method, Multi-Energy Method, and BST Method, the BST Method is found to be the best fit. As a result of comparing the overpressure with the distance obtained by each explosion prediction model with the damage criteria for structure, it is estimated that the structure located within 90 m from explosion center would suffer a damage more than partial destruction, and glass panes of the structure separated by 600 m would be fractured.

Risk Assessment of High Pressure HCNG Refueling Station Explosion by Numerical Simulation (시내버스용 HCNG 고압가스 충전소의 폭발 위험성 해석)

  • Kang, Seung-Kyu;Kim, Young-Gu;Choi, Seul-Ki;Kwon, Jeong-Rak
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.113-113
    • /
    • 2014
  • This study has been conducted for evaluation of qualitative/quantitative risk of HCNG filling station. In case of fire explosion occurred because of hydrogen, CNG, and HCNG leaking on same conditions, maximum overpressure was measured as 30kPa for hydrogen, 3.5kPa for HCNG, and 0.4kPa for CNG. The overpressure of HCNG was measured 7.75 times higher than that of CNG, but it was only 11.7% compared with hydrogen. When the explosion was occurred, in case of hydrogen, the measured influential distance of overpressure was 59m and radiant heat was 75m. In case of CNG, influential distance of overpressure was 89m and radiant heat was 144m would be estimated. In case of 30% HCNG that was blended with hydrogen and CNG, influential distance of overpressure was 81m and radiant heat was 130m were measured. As the explosion occurred with the same sized container that had 350bar for hydrogen and 250bar of CNG and HCNG, the damage distance that explosive overpressure and radiant heat influenced CNG was seen as the highest. HCNG that was placed between CNG and hydrogen tended to be seen as more similar with CNG.

  • PDF

Near-explosion protection method of π-section reinforced concrete beam

  • Sun, Qixin;Liu, Chao
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.209-224
    • /
    • 2022
  • In this study, the numerical analysis model of π-beam explosion is established to compare and analyze the failure modes of the π-beam under the action of explosive loads, thus verifying the accuracy of the numerical model. Then, based on the numerical analysis of different protection forms of π beams under explosive loads, the peak pressure of π beam under different protection conditions, the law of structural energy consumption, the damage pattern of the π beam after protection, and the protection efficiency of different protective layers was studied. The testing results indicate that the pressure peak of π beam is relatively small under the combined protection of steel plate and aluminum foam, and the peak value of pressure decays quickly along the beam longitudinal. Besides, as the longitudinal distance increases, the pressure peak attenuates most heavily on the roof's explosion-facing surface. Meanwhile, the combined protective layer has a strong energy consumption capacity, the energy consumed accounts for 90% of the three parts of the π beam (concrete, steel, and protective layer). The damaged area of π beam is relatively small under the combined protection of steel plate and aluminum foam. We also calculate the protection efficiency of π beams under different protection conditions using the maximum spalling area of concrete. The results show that the protective efficiency of the combined protective layer is 45%, demonstrating a relatively good protective ability.