• Title/Summary/Keyword: Explosion accidents

Search Result 304, Processing Time 0.028 seconds

Optimization of Designing Barrier to Mitigate Hazardous Area in Hydrogen Refueling Stations (수소충전소 폭발위험장소 완화를 위한 확산차단벽 최적화 설계)

  • SEUNGHYO AN;SEHYEON OH;EUNHEE KIM;JUNSEO LEE;BYUNGCHOL MA
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.734-740
    • /
    • 2023
  • Hydrogen emphasis on safety management due to its high potential for accidents from wide explosive limits and low ignition energy. To prevent accidents, appropriate explosion-proof electrical equipment with installed to safe management of ignition sources. However, designing all facilities with explosion-proof structures can significantly increase costs and impose limitations. In this study, we optimize the barrier to effectively control the initial momentum in case of hydrogen release and form the control room as a non-hazardous area. We employed response surface method (RSM), the barrier distance, width and height of the barrier were set as variables. The Box-Behnken design method the selection of 15 cases, and FLACS assessed the presence of hazardous area. Analysis of variance (ANOVA) analysis resulting in an optimized barrier area. Through this methodology, the workplace can optimize the barrier according to the actual workplace conditions and classify reasonable hazardous area, which is believed to secure safety in hydrogen facilities and minimize economic burden.

Analyzing Chemical Reaction Routes of Explosion by a Mixed Acid - Focusing on Chemical Carriers - (혼산에 의한 폭발사고의 화학반응 경로 분석 - 화학물질 운반 선박을 중심으로 -)

  • Kang, Yu Mi;Yim, Jeong-Bin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.6
    • /
    • pp.661-668
    • /
    • 2017
  • The purpose of this study is to analyze the chemical reaction pathway for explosion accident of mixed cargo. The analysis used a structural scenario using event-tree analysis. Structural scenarios were constructed by estimating various chemical reaction paths in the content of the mixed cargo accident recorded in the written verdict. The analytical method was applied to three kinds of analysis: chemical analysis based on chemical theory, quantitative analysis using chemical reaction formula, and probabilistic analysis through questionnaire. As a result of analysis, the main pathway of the accident occurred in three ways: the path of explosion due to the reaction of concentrated sulfuric acid with water, the path of explosion due to the reaction of metal and mixed acid, and the path of explosion by synthesizing with special substances. This result is similar to the path recorded in the validation, and it leads to thar the proposed path analysis method is valid. The proposed method is expected to be applicable to chemical reaction path estimation of various chemical accidents.

Forensic Engineering Study on Assessment of Damage to Pressure Vessel Because of CNG Vehicle Explosion (CNG 차량 폭발의 용기 손상 평가에 관한 법공학적 연구)

  • Kim, Eui-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.439-445
    • /
    • 2011
  • Forensic Engineering is the art and science of professionals qualified to serve as engineering experts in courts of law or in arbitration proceedings. Buses using compressed natural gas (CNG) trend to be extended in use internationally as optimal counterplan for reducing discharge gas of light oil due to high concern about environment. However, CNG buses have to be equipped with composite pressure vessels (CPVs); since the CPVs contain compressed natural gas, the risks in the case of accident is very high. Hence, the investigation of such accidents is usually associated with engineering analysis. Among the possible reasons for such CNG explosion accidents is vehicle fire and vessel fracture. By conducting formal inspection and engineering tests, in this study, the cause of vessel explosion is investigated by analyzing the failure mechanism by fractography and by comparing the material properties of a reference part with those of a problem part by adopting instrumented indentation technique.

A Study on the Actual Status of Heat Transfer oils in Industries for Process Safety Management (공정안전관리 사업장의 열매체유 사용실태에 관한 연구)

  • Lee, Keun Won;Lee, Joo Yeob
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.5
    • /
    • pp.33-39
    • /
    • 2014
  • Heat transfer oils are used in applications such as chemical plant heating systems, refinery heat exchange systems, certain gas processes, injection molding systems, and pulp and paper processing. These oils are extremely stable and resistant to thermal and oxidative degradation. In the event of a spill or accidental release of heat transfer oils, it can be ignited easily when there is an ignition source. This study discusses the status of safety management through the actual status of the heat transfer oils to prevent fire and explosion accidents in industries for process safety management. The actual status of the heat transfer oils in process system of industries surveyed by a questionnaire developed. The results of this study can be used to help establishment of safety management to prevent fire and explosion accidents, such as the management of heat transfer oils, safe operation and maintenance in heat transfer oil processes.

A Study on How to Evaluate Appropriate Ventilation Rate of Indoor Facility Handling Hazardous Substances by Their Flammable and Explosive Properties (유해화학물질을 취급하는 실내시설에서의 인화폭발성에 따른 적정 환기량 산정에 대한 연구)

  • Mansu Park;Cheong-Min Seo;Hyo-Soub Yoon;Kyoshik Park
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.2
    • /
    • pp.293-301
    • /
    • 2024
  • Purpose: Ministry of Environment statistics reveals more than 132 fire·explosion accidents in South Korea between 2014 and 2023. Among them, fire and/or explosion accidents are very impactive in their scale and consequence. This study aims to suggest a new method of reasonable way to calculate the ventilation rate of indoor facility handling hazardous chemicals based on their inflammability. Method: A new method to calculate the ventilation rate is based on the physicochemical properties of the chemicals handled, which is more reasonable compared with the current regulation based only on the floor area of the facility. Result: Considering the physicochemical properties, 178 chemicals based on their inflammability were studied and 168(94%) met the criteria for the current regulation. Some materials have been shown to require too much or too little ventilation rate. Conclusion: Through this study, a reasonable method of calculating the required ventilation rate was proposed. This should be applied to ensure the safety of workers to deal chemicals.

A Study of Explosion Risk Assessment for Designation of Dangerous Goods Transshipment Pier at Ulsan Port (울산항 위험물 환적부두 지정을 위한 폭발 위험성 평가에 관한 연구)

  • Kang, Min-Kyoon;Lee, Yun-Sok;Ahn, Young-Joong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.3
    • /
    • pp.109-116
    • /
    • 2021
  • The explosion of a chemical tanker ship during cargo transshipment via double-banking at Ulsan Port, resulted in major damage including fires involving nearby ships. As a follow-up measure to prevent the recurrence of similar accidents, the 'Safety Management of Dangerous Goods in Port' was established, and the designation of a transshipment pier for dangerous goods is required given the risk of explosion and the impact on major facilities in the port. This study evaluated the Fire & Explosion Index of major transshipment cargoes in Ulsan Port to design a transshipment pier based on the Explosion Risk Assessment. Based on the results of Fire & Explosion Index evaluation of styrene monomer and benzene, severe explosion risk was confirmed, and the exposure radius was calculated. Based on the results of the exposure radius, the risk range for each major pier was calculated, and 12 terminals were proposed as transshipment pier candidates considering port facilities, surrounding dangerous facilities, and residential aspects. Since the results of the study suggest transshipment piers based on the risk radius alone, maritime traffic safety, pier and mooring facilities, safety facilities and accessibility for emergency response should be considered comprehensively to designate actual transshipment piers.

Accident Prevention Counterplen of the Elevator for the Passenger (승객용 승강기의 재해예방에 관한 연구)

  • Kwon, Oh-Heon;Go, Seong-Seok;Yun, Yu-Seong
    • Journal of the Korean Society of Safety
    • /
    • v.17 no.2
    • /
    • pp.106-111
    • /
    • 2002
  • Recently the car and elevator accidents as well as the fire, explosion and collapse increased. The passenger elevator accident from 1993 year to 2001 year has about 56.7% of total accidents and the human victims of 180 according to the Korea Elevator Safety Institute. Accident cause and prevention were investigated for the elevator having the fall, impact and narrowness accident types. The prevention and protection methods of the elevator accident from analysis results were suggested by comparing and analogizing the accident statistics about the accident investigation of the passenger elevator according to the elevator accidents.

Analysis of Hydrogen Accident in Korea (국내 수소사고사례 분석)

  • Jo, Young-Do;Tak, Song-Su;Choi, Kyoung-Suhk;Lee, Jong Rark;Park, Kyo-Shik
    • Journal of Hydrogen and New Energy
    • /
    • v.15 no.1
    • /
    • pp.82-87
    • /
    • 2004
  • Hydrogen is considered to be the most important future energy carrier in many applications reducing greenhouse gas emissions significantly. To be applicable as energy carrier the safety issues associated with hydrogen applications needs to be investigated and fully understood. In order to analyze the risks associated with hydrogen applications, accidents associated with hydrogen in Korea from 1963 to 2002 have been analysed in this work. From analysis of accidents, we propose the necessity of research on hydrogen releases, dispersion in air, and explosion due to high hazardous of hydrogen.

PREDICTION OF HYDROGEN CONCENTRATION IN CONTAINMENT DURING SEVERE ACCIDENTS USING FUZZY NEURAL NETWORK

  • KIM, DONG YEONG;KIM, JU HYUN;YOO, KWAE HWAN;NA, MAN GYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.139-147
    • /
    • 2015
  • Recently, severe accidents in nuclear power plants (NPPs) have become a global concern. The aim of this paper is to predict the hydrogen buildup within containment resulting from severe accidents. The prediction was based on NPPs of an optimized power reactor 1,000. The increase in the hydrogen concentration in severe accidents is one of the major factors that threaten the integrity of the containment. A method using a fuzzy neural network (FNN) was applied to predict the hydrogen concentration in the containment. The FNN model was developed and verified based on simulation data acquired by simulating MAAP4 code for optimized power reactor 1,000. The FNN model is expected to assist operators to prevent a hydrogen explosion in severe accident situations and manage the accident properly because they are able to predict the changes in the trend of hydrogen concentration at the beginning of real accidents by using the developed FNN model.

Influence of Mixture Non-uniformity on Methane Explosion Characteristics in a Horizontal Duct (수평 배관의 메탄 폭발특성에 있어서 불균일성 혼합기의 영향)

  • Ou-Sup Han;Yi-Rac Choi;HyeongHk Kim;JinHo Lim
    • Korean Chemical Engineering Research
    • /
    • v.62 no.1
    • /
    • pp.27-35
    • /
    • 2024
  • Fuel gases such as methane and propane are used in explosion hazardous area of domestic plants and can form non-uniform mixtures with the influence of process conditions due to leakage. The fire-explosion risk assessment using literature data measured under uniform mixtures, damage prediction can be obtained the different results from actual explosion accidents by gas leaks. An explosion characteristics such as explosion pressure and flame velocity of non-uniform gas mixtures with concentration change similar to that of facility leak were examined. The experiments were conducted in a closed 0.82 m long stainless steel duct with observation recorded by color high speed camera and piezo pressure sensor. Also we proposed the quantification method of non-uniform mixtures from a regression analysis model on the change of concentration difference with time in explosion duct. For the non-uniform condition of this study, the area of flame surface enlarged with increasing the concentration non-uniform in the flame propagation of methane and was similar to the wrinkled flame structure existing in a turbulent flame. The time to peak pressure of methane decreased as the non-uniform increased and the explosion pressure increased with increasing the non-uniform. The ranges of KG (Deflagration index) of methane with the concentration non-uniform were 1.30 to 1.58 [MPa·m/s] and the increase rate of KG was 17.7% in methane with changing from uniform to non-uniform.