• Title/Summary/Keyword: Explosion Range

Search Result 155, Processing Time 0.029 seconds

The Study on Evaluation of Human Body Injury by Explosion of Portable Butane Gas Range (부탄연소기 폭발로 인한 인체 상해 평가에 관한 연구)

  • Kim, Eui Soo;Shim, J.H.;Kim, J.P.;Park, N.K.
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.3
    • /
    • pp.60-67
    • /
    • 2016
  • The gas leak and explosion accident is able to give a fatal injury to nearby people from the explosion center and interest in effect of the explosion on the human body is increased. Accidents by Portable Butane Gas Range of a gas explosion accident occupy the most share. As a result, the injury on the human body frequently occur. However, It is situation that are experiencing difficulties in consequence analysis of explosion accidents owing to shortage of explosion power data and lack of research on the effect of the human body by the gas explosion. This paper acquire human injury data by performing the actual explosion experiment with Portable Butane Gas Range and evaluate power by explosion and effect of explosion on the human body to perform explosion simulation with LS-DYNA program. It is intended to contribute to the exact cause of the accident investigation and the same type of accident prevention.

Tests on explosion-resisting properties of high-performance equal-sized-aggregate concrete composite sandwich plates

  • Yizhong Tan;Songlin Yue;Gan Li;Chao Li;Yihao Cheng;Wei Dai;Bo Zhang
    • Structural Engineering and Mechanics
    • /
    • v.87 no.4
    • /
    • pp.297-304
    • /
    • 2023
  • Targeted introduction of explosion-resisting and energy-absorbing materials and optimization of explosion-resisting composite structural styles in underground engineering are the most important measures for modern engineering protection. They could also improve the survivability of underground engineering in wartime. In order to test explosion-resisting and energy-absorbing effects of high-performance equal-sized-aggregate (HPESA) concrete, the explosive loading tests were conducted on HPESA concrete composite plates by field simple explosion craters. Time-history curves of the explosion pressure at the interfaces were obtained under six conditions with different explosion ranges and different thicknesses of the HPESA concrete plate. Test results show that under the same explosion range, composite plate structures with different thicknesses of the HPESA concrete plate differ significantly in terms of the wave-absorbing ability. Under the three thicknesses in the tests, the wave-absorbing ability is enhanced with the growing thickness and the maximum pressure attenuation index reaches 83.4%. The energy attenuation coefficient of the HPESA concrete plate under different conditions was regressively fitted. The natural logarithm relations between the interlayer plate thickness and the energy attenuation coefficient under the two explosion ranges were attained.

A Study on The Explosion Characteristics of Flammable Gases (가연성 가스의 폭발특성에 대한 연구)

  • 오규형;김한석;이춘하
    • Journal of the Korean Society of Safety
    • /
    • v.7 no.3
    • /
    • pp.66-72
    • /
    • 1992
  • An experimental study was carried out to analyse the explosion characteristics of flammable gas-air mixtures. Used flammable gases were hydrogen, methane, acethylene, ethylene and pro-pane, explosion Pressure, explosoin pressure rising rate, and flame propagation velocity were measured experimentaly. The maximum explosion pressure and rising rate of flammmalbe gas air mixtures were appeared at the range of slightly higher concentration than the stoichiometric concentration. Initial pressure before explosion was controlled from 0.6 to 2.0kg/cm absolutly. Explosion pressure was increased with increment of the initial pressure, and the relationship between initial pressure and explosion pressure was Pe = KPi. The effect of vessel size on explosion characteristics was also analysed In this experiment. Explosion pressure was increased with in-creasing the vessel size, otherwise explosion pressure rising rate was decreased. When we locate a dummy material in vessel explosion pressure was decreased with increasing the dummy volume but exlosion pressure rising rate was increased.

  • PDF

A Study on the Explosion Characteristics of by Product Gas of Carbon Black Manufacturing Process (카본블랙 제조 부생가스의 폭발 특성연구)

  • Oh Kyu-Hyung;Lee Sung-Eun
    • Journal of the Korean Institute of Gas
    • /
    • v.10 no.3 s.32
    • /
    • pp.60-64
    • /
    • 2006
  • Explosion range and explosion characteristics of by product gas from carbon black manufacturing process were studied. About 75% of the by product gas were composed with water vapour and nitrogen. And the combustible component in the gas were hydrogen, methane, acetylene and carbon mono-oxide. Because of the combustible components in the by product gas there are explosion hazards in the gas handling process. Explosion range of the gas by experiment was from 17.1% to 70.7% and the value has considerable difference with the calculated value from Lechatelier law. Explosion pressure of the gas was $5.4kg/cm^2$ and the average explosion pressure rise rate was $39.2kg/cm^2/s$. Based on the experimental result we can expect that a explosion or fire accident during the handling the gas can make a severe loss, therefore there should be a explosion prevention or protection measures in the gas handling process.

  • PDF

The Effect of the Change of Wind Velocity on the Classification of Explosion Hazardous Area (폭발위험장소 선정 시 풍속 변화에 관한 연구)

  • Kwon, Yong-Joong;Kim, Dong-Joon
    • Korean Journal of Hazardous Materials
    • /
    • v.6 no.2
    • /
    • pp.62-67
    • /
    • 2018
  • It is very important to classify explosion hazardous area in order to prevent an accident explosion. In order to prevent such a explosion, the Industrial Safety and Health Standards Rules stipulates the establishment and management of explosion hazards in accordance with the criteria set by the Korean Industrial Standards. This study has investigated the range of the explosion hazardous area according to various hole sizes, pressures, vapor densities, and wind velocities in the outdoor flammable liquid tank using KS C IEC-60079-10-1 $2^{nd}$ Ed.(=IEC CODE) and PHAST. The results show that the explosion hazardous areas by IEC CODE have circle shapes. However, the areas by PHAST show ellipse shapes. The different of the explosion hazardous areas increases with the increase of wind velocity.

A Study on the Measurement of Explosion Range by CO2 Addition for the Process Safety Operation of Propylene (프로필렌의 공정안전 운전을 위한 CO2 첨가량에 따른 폭발범위 측정에 관한 연구)

  • Choi, Yu-Jung;Heo, Jong-Man;Kim, Jung-Hun;Choi, Jae-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.599-606
    • /
    • 2019
  • Most facilities that manufacture products made from the hazardous materials operate at high temperatures and pressures. Therefore, there is a risk of fire explosion. In particular, an explosion accident is a major risk factor for facilities with hazardous materials, such as oil, chemical, and gas. Propylene is often used in sites producing basic raw materials and synthetic materials by addition polymerization at petrochemical plants. To prevent an explosion in the business using propylene, the explosion range with the oxygen concentration was calculated according to the changes in temperature and pressure using an inert gas, carbon dioxide. In these measurements, the temperature was $25^{\circ}C$, $100^{\circ}C$, and $200^{\circ}C$ and the amount of carbon dioxide in the container was $1.0kgf/cm^2.G$, $1.5kgf/cm^2.G$, $2.0kgf/cm^2.G$, and $2.5kgf/cm^2.G$. The explosion limit was related to temperature, pressure, and oxygen concentration. The minimum oxygen concentration for an explosion decreased with increasing temperature and pressure. The range of explosion narrowed with decreasing oxygen concentration. In addition, no explosion occurred at concentrations below the minimum oxygen concentration, even with steam and an ignition source of propylene.

Impact Range Comparative Analysis of BLEVE by Gas Leakage According to LPG Main Components (LPG 주성분에 따른 누출 폭발 피해 영향범위 비교분석)

  • Soo-Hee Lim;Su-Yeon Son;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.26 no.3
    • /
    • pp.51-57
    • /
    • 2024
  • The purpose of this study is to compare and analyze the impact range of explosion damage due to gas leaks at LPG filling stations, focusing on propane and butane, which are components of vehicle LPG. The scenarios were designed based on the explosion incident at an LPG filling station in Gangwon-do, where an actual gas leak accident occurred, resulting in Scenario I and Scenario II. The ALOHA program, developed by the U.S. National Oceanic and Atmospheric Administration (NOAA), was used as the tool to analyze the impact range of the explosion damage for both substances. The results of the study indicated that, under identical conditions, propane had a wider impact range of damage than butane. This is presumed to be due to the greater explosion energy of propane, attributable to its physicochemical properties. Therefore, when preparing for LPG leak accidents, measures for propane need to be prioritized. As safety measures for propane, two suggestions were made to minimize human casualties. First, from a preventive perspective, it is suggested to educate workers about propane. Second, from the perspective of response measures and damage minimization, it is suggested to thoroughly prepare emergency evacuation and rescue plans, evacuation routes, designated shelters, and emergency response teams. This study compares and analyzes the impact range of radiative heat damage based on LPG components. However, hazardous accidents are critically influenced by the type of leaking substance, the form of the leak, and meteorological factors affecting the diffusion pattern of the substance. Therefore, for future research, it is proposed to model various leakage scenarios for the same substance to conduct a comprehensive risk assessment.

Investigation of the LPG Gas Explosion of a Welding And Cutting Torch at a Construction Site

  • Lee, Su-kyung;Lee, Jung-hoon;Song, Dong-woo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.811-818
    • /
    • 2018
  • A fire and explosion accident caused by a liquefied petroleum gas (LPG) welding and cutting torch gas leak occurred 10 m underground at the site of reinforcement work for bridge columns, killing four people and seriously injuring ten. We conducted a comprehensive investigation into the accident to identify the fundamental causes of the explosion by analyzing the structure of the construction site and the properties of propane, which was the main component of LPG welding and cutting work used at the site. The range between the lower and upper explosion limits of leaking LPG for welding and cutting work was examined using Le Chatelier's formula; the behavior of LPG concentration change, which included dispersion and concentration change, was analyzed using the fire dynamic simulator (FDS). We concluded that the primary cause of the accident was combustible LPG that leaked from a welding and cutting torch and formed a explosion range between the lower and upper limits. When the LPG contacted the flame of the welding and cutting torch, LPG explosion occurred. The LPG explosion power calculation was verified by the blast effect computation program developed by the Department of Defense Explosive Safety Board (DDESB). According to the fire simulation results, we concluded that the welding and cutting torch LPG leak caused the gas explosion. This study is useful for safety management to prevent accidents caused by LPG welding and cutting work at construction sites.

A Comparison of Blast Load in a Simplified Analytical Model of Rigid Column (강체 기둥의 단순 해석 모델에서의 폭발 하중 비교)

  • Park, Hoon
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • The analysis methods of blast analysis models are classified into direct analysis and indirect analysis, and the latter is divided into semi-empirical and numerical analysis methods. In order to evaluate the applicability of the ELS blast analysis program, which is a program for analyzing the semi-empirical models, this study selected a simplified analytical model and examined the blast load characteristics of free-air burst explosion and surface burst explosion by using AT-Blast, RC-Blast, and Kinney and Graham's empirical equations, which are the semi-empirical analysis programs. As a result of analyzing the explosion pressure for the scaled distance and the incidence angle for the simplified analytical model, an appropriate analysis can be performed when the range of the scaled distance in the free-air burst explosion analysis was 0.3~0.461 and when the range of the scaled distance in the surface burst explosion analysis was 0.378~0.581. In terms of the incidence angle, the results analyzed within $45^{\circ}$ were considered to be appropriate.

Spherical Particles Formation in Lubricated Sliding Contact -Micro-explosion due to the Thermally-activated Wear Process-

  • Kwon, O.K.
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 1995
  • The mechanism of various spherical particles formation from wide range of tribo-systerns is suggested and deduced by the action of micro-explosion on the basis of the thermally-activated wear theory, in which the flash temperature at contact could be reached clearly upto the material molten temperature due to the secondary activation energy from the exothermic reactions involving lubricant thermo-decomposition, metals oxidation, hydrogen reactions and other possible complex thermo-reactions at the contacts. Various shapes of spherical particles generated from the tribosystem can be explained by the toroidal action of micro-explosion accompanied with the complex thermo-chemical reactions at the contact surfaces or sub-surfaces.