• Title/Summary/Keyword: Explants

Search Result 680, Processing Time 0.028 seconds

Agrobacterium tumefaciens Mediated Genetic Transformation of Pigeonpea [Cajanus cajan (L.) Millsp.]

  • Kumar, S.Manoj;Syamala, D.;Sharma, Kiran K.;Devi, Prathibha
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.69-75
    • /
    • 2004
  • Optimal protocol for efficient genetic transformation has been defined to aid future strategies of genetic engineering in pigeon pea with agronomically important genes. Transgenic pigeonpea plants were successfully produced through Agrobacterium tumefaciens-mediated genetic transformation method using cotyledonary node explants by employing defined culture media. The explants were co-cultivated with A. tumefaciens strain C-58 harboring the binary plasmid, pCAMBIA-1301 [con-ferring $\beta$-glucuronidase(GUS) activity and resistance to hygromycin] and cultured on selection medium (regeneration medium supplemented with hygromycin) to select putatively transformed shoots. The shoots were then rooted on root induction medium and transferred to pots containing sand and soil mixture in the ratio of 1:1. About 22 putative TO transgenic plants have been produced. Stable expression and integration of the transgenes in the putative transgenics were confirmed by GUS assay, PCR and Southern blot hybridization with a transformation efficiency of over 45%. Stable integration and expression of the marker gene has been confirmed in the TO and T1 transgenics through PCR, and Southern hybridization.

High frequency plant regeneration from transverse thin cell layers in Indian mustard (Brassica juncea L.)

  • Bhuiyan, Mohammed Shafi Ullah;Lim, Yong-Pyo;Min, Sung-Ran;Choi, Kwan-Sam;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.81-86
    • /
    • 2009
  • An efficient and reproducible plant regeneration system was established using transverse thin cell layers (tTCLs) in five cultivars of Brassjca juncea L. The effects of medium conditions, explant types (tTCLs of hypcotyl and cotyledonary petiole) on shoot regeneration were examined in this study. The maximum shoot regeneration frequency was obtained in Murashige and Skoog (MS) medium supplemented with 4 mg/L 6-benzylaminopurine (BA) and 0.2 mg/L 1-naphthaleneacetic acid (NAA). The hypocotyls derived tTCL explants had more shoot regeneration frequency (52%) than the cotyledonary petiole derived tTCL explants. Shoot induction was further improved by the addition of silver nitrate ($AgNO_3$) in the regeneration medium. A significant genotypic effect was also observed between the five cultivars; Rai-5 displayed higher capacities to produce shoots than other cultivars. Regenerated shoots were rooted on MS basal medium without PGRs which induced 90% of roots. The plantlets established in greenhouse conditions with 99% survival, flowered normally and set seeds. The regenerated plants were fertile and identical to source plants.

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11b
    • /
    • pp.6-7
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$^{-1}$) or TDZ (1-2 mg1$^{-1}$). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant.(중략)

  • PDF

Change in Levels of Endogenous Hormone and Detection of Adventitious Bud-Related Protein during Culture of Hybrid Poplar Explants

  • Song, Jae-Jin
    • Journal of Plant Biology
    • /
    • v.38 no.2
    • /
    • pp.143-151
    • /
    • 1995
  • Addition of plant growth hormones [0.01 mg/L NAA and 0.2mg/L benzyladenine (BA)] to a woody plant medium stimulated the adventitious bud formation of poplar explants during culture. Endogenous IAA content increased rapidly at the initial culture stage and then decreased, being followed by rapid increment again at the late culture. But the content of trans-zeatin riboside (t-ZR) increased continuously during the culture. Cytoplasmic soluble proteins were analyzed by one- and two-dimensional SDS-PAGE. Increased amount of 40 kD band was detected by one-dimensional electrophoresis using Coomassie Blue staining during the culture and two distinctive proteins whose mol wt is 40,000 were detected by two-dimensional electrophoresis using autoradiography and these proteins were synthesized continuously prior to the adventitious bud formation. When the midvein segments were transferred to the actinomycin D-containing medium, the spots of adventitious bud-related proteins(ABRPs) did not disappeared but weakened in intensity. So, it is concluded that genes coding for the ABRPs are regulated to some degree at the transcriptional level. Also, they were not observed in BA-free medium, suggesting that these proteins be regulated by cytokinin, which made then possible to form the adventitious bud.

  • PDF

Comparison of Adventitious Shoot Formation in Petiole Explant Cultures of 20 Cultivars of Catharanthus roseus

  • Lee, Soo-Young;Park, Pil-Son;Chung, Hwa-Jee;In, Dong-Soo;Park, Dong-Woog;Jang R. Liu
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.59-61
    • /
    • 2003
  • Petiole explants from 20 cultivars of Catharanthus roseus were cultured on various shoot-inducing media to assess their competence for adventitious shoot formation. After eight weeks of culture on Murashige and Skoog' s medium supplemented with 4.4 $\mu\textrm{m}$6-benzyladenine and 0.5 $\mu\textrm{m}$ $\alpha$-naphthaleneacetic acid, petiole explants from 'Cooler Icy Pink' exhibited the greatest frequency of adventitious shoot formation at 40%, which was followed by 'Little Bright Eye'. By comparing with a previous study on assessment of competence for adventitious shoot formation in hypocotyl explant cultures of various cultures, it is indicated that the relative degree of their competence among cultivars varies to the organ used for the source of explant. Excised adventitious shoots were readily rooted on half-strength MS basal medium. Regenerated plantlets were successfully transplanted to potting soil and grown to maturity in a greenhouse.

Endoreduplication in Phalaenopsis is affected by light quality from light-emitting diodes during somatic embryogenesis

  • Park, So-Young;Yeung, Edward C.;Paek, Kee-Yoeup
    • Plant Biotechnology Reports
    • /
    • v.4 no.4
    • /
    • pp.303-309
    • /
    • 2010
  • Endoreduplication is a developmental process that is unique to plants and occurs in all plants. The present study aimed to assess endoreduplication in various explant tissues and regenerated somatic embryos of Doritaenopsis. We further investigated the effects of light quality on endoreduplication and somatic embryo proliferation. To this end, we studied endoreduplication in leaves and root tips from regenerated plantlets and somatic embryos and in developing somatic embryos under 4 types of lighting conditions: red light, red + far-red light, red + blue light, and white light. We found that the degree of endoreduplication varied in different explants, and that the choice of explants used also influenced the ploidy levels of the newly regenerated somatic embryos. The DNA content of the leaf (2C-8C) was less than that of the root tip (2C-16C) and somatic embryo (2C-64C). In terms of light quality, the combination of red and far-red light produced the highest number of somatic embryos, while maintaining a low degree of endoreduplication. The data obtained indicate that this light combination stimulates somatic embryogenesis in Doritaenopsis and may exert some control on endoreduplication during cell division. These findings can be applied to achieve a reduction in somaclonal variations for the purpose of mass proliferation and genetic improvement.

Analysis of Flavonoid 3',5'-Hydroxylase Gene in Transgenic Petunia (Petunia hybrida) Plants (형질 전환된 페튜니아 식물체에서의 Flavonoid 3',5' -Hydroxylase 유전자의 분석)

  • 김영희
    • Korean Journal of Plant Tissue Culture
    • /
    • v.25 no.5
    • /
    • pp.323-327
    • /
    • 1998
  • The flavonoid biosynthetic pathway has been studied as a genetic model system, particularly in Petunia hybrida. In order to study the flavonoid biosynthetic pathway, we constructed a fusion gene system between Cauliflower Mosaic Virus (CaMV) 35S promoter and eggplant flavonoid 3', 5'-hydroxylase in pBI 121 plasmid. An optimal condition for plant regeneration was observed when internode explants were cultured on MS medium supplemented with IAA 0.2 mg/L plus BA 3 mg/L. For plant transformation internode explants of Petunia hybrida were precultured on BM medium supplemented with IAA 0.2 mg/L plus BA 3 mg/L. Putative transgenic plants were selected on medium containing kanamycin 50 mg/L plus cefotaxim 300 mg/L. Putative selected transformants were confirmed by amplification of selectable marker gene (nptII) by polymerase chain reaction (PCR) and Southern hybridization of flavonoid 3',5'-hydroxylase gene.

  • PDF

In vitro Multiplication of Haloxylon recurvum (Moq.) - a Plant for Saline Soil Reclamation

  • Dagla Harchand R.;Shekhawat N.S.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.155-160
    • /
    • 2005
  • Haloxylon recurvum (Locally known as Khar) is drought and salt tolerant plant of Thar Desert. This plant is a major biomass producer and has economic and ecological importance for the region. There is need for study on biology, propagation and genetic improvement for utilization of this plant for reclamation of saline soils. We report here on in vitro propagation of Haloxylon recurvum (Moq.) using nodal explant. Secretion of phenolic compound from explants was a major constraint for establishment of culture. This was checked by thorough washing and quick transfer of explant on fresh culture medium. Juvenile nodal explant with leaves was found suitable for culture establishment. Benzy-ladenine($4.0\;{\mu}M$) incorporated in Murashige and Skoog (MS) medium with additives (50 mg/L ascorbic acid and 25 mg/L each of adenine sulphate, arginine and citric acid) induced multiple shoots from nodal explant. Addition of $1.0\;{\mu}M$ naphthalene acetic acid (NAA) in combination with $4.0\;{\mu}M$ BAP improved the growth of axillary shoots. Further shoot amplification was achieved by repeated subculture of mother explants on fresh medium. Forty percent of the micropropagated shoots rooted on half-strength MS medium with $4.0\;{\mu}M$ indolebutyric acid (IBA) and 100 mg/L activated charcoal, at $28{\pm}2^{\circ}C$ and $60\%$ RH. Sixty percent of these plantlets were hardened in green house.

Shoot Organogenesis and Plantlet Regeneration from Stem Explants of Cleome rosea Vahl (Capparaceae)

  • Claudia Simoes;Alessandra S. Santos;Norma Albarello;Solange Faria Lua Figueiredo
    • Journal of Plant Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.199-204
    • /
    • 2004
  • The medicinal value of the genus Cleome justifies bio-technological studies of Cleome rosea, a Brazilian annual species from sandy coastal ecosystems (restinga), which have been submitted to an intense process of antropogenic degradation. In the present work, was analyzed the influence of cytokinins, 6-benzyladenine (BA) and 6-furfurylaminopurine (kinetin) added to the Murashige and Skoog medium (MS), on the proliferation capacity of explants from the stem axis (hypocotyl, node and internode) for a period of five monthly subcultures (150 days). Regardless of the explant sources, plantlet regeneration by direct and indirect organogenesis was observed. The largest number of shoots proliferated through direct organogenesis was obtained on medium with 4.4 $\mu{M}$ BA. Also, the highest proliferation capacity through indirect organogenesis was found on medium with 4.4 $\mu{M}$ BA + 4.6 $\mu{M}$ kinetin. The presence of kinetin alone was not effective for multiplication of the species. Elongation and rooting were obtained when shoots were transferred onto growth regulator-free medium, and acclimatization rates from 70% to 81% were achieved depending on explant sources used. Plants were then successfully established in soil and showed normal phenotypes.

Shoot Regeneration from the Leaf Explants of Tetragonia tetragonoides $O.\;K_{UNTZE}$ (번행초의 잎 절편으로부터 신초의 재분화)

  • Hwang, Sung-Jin;Pyo, Byoung-Sik;Hwang, Baik
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.2
    • /
    • pp.116-119
    • /
    • 2002
  • A protocol has been developed for differentiation of adventitious shoots directly from leaf segments of Tetragonia tetragonoides O. Kuntze. Murashige and Skoog (MS) medium supplemented with 2 mg/L $N^6-benzyladenine$ (BA) and 0.5 mg/L ${\alpha}-naphthaleneacetic$ acid (NAA) supported the induction of adventitious shoots from leaf explants. Adventitious shoots were multiplied by subculturing on the double strength MS (2MS) medium supplemented with 0.5 mg/L NAA and 2 mg/L BA. Shoots were rooted on MS basal medium without any growth regulators.