• Title/Summary/Keyword: Explant

Search Result 381, Processing Time 0.025 seconds

Characterization of Cell Growth and Camptothecin Production in Cell Cultures of Camptotheca acuminata

  • Song, Seung-Hoon;Byun, Sang-Yo
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.631-638
    • /
    • 1998
  • Studies were made to elucidate the cell growth and the production of camptothecin and its derivatives in cell cultures of Camptotheca acuminata. High resolution HPLC chromatograms to analyze camptothecin and 10-hydroxycamptothecin in lactone and carboxylate forms were obtained with a fluorescence detector. Calli inductions were optimized with the young stem of explant on Schenk and Hildebrandt (SH) medium supplemented with 5 mg/l $\alpha$-naphthaleneacetic acid (NAA), 0.2 mg/l 6-benzylamino purine (BAP), 2.0% sucrose, and 0.5% agar. The hybrid medium, a mixture of SH and Murashige and Skoog (MS) salts, was developed for homogeneous suspension cultures without large cell aggregates. The optimum phytohormone concentrations for successful suspension cultures were 1.0mg/l of 2,4-D and 0.5 mg/l of kinetin. The highest growth in suspension cultures was observed when 49.7% (w/w) of the cells was composed of small aggregates which were below 0.1 mm in diameter. Time course changes of cell growth and camptothecin production showed that camptothecin accumulation was started at the end of the growth phase and the maximum content was obtained 10 days after inoculation. Yeast extract elicitor increased camptothecin accumulation 4 times. Methyl jasmonate and jasmonic acid also increased camptothecin production 6 and 11 times, respectively.

  • PDF

Differentiation of human male germ cells from Wharton's jelly-derived mesenchymal stem cells

  • Dissanayake, DMAB;Patel, H;Wijesinghe, PS
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.45 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • Objective: Recapitulation of the spermatogenesis process in vitro is a tool for studying the biology of germ cells, and may lead to promising therapeutic strategies in the future. In this study, we attempted to transdifferentiate Wharton's jelly-derived mesenchymal stem cells (WJ-MSCs) into male germ cells using all-trans retinoic acid and Sertoli cell-conditioned medium. Methods: Human WJ-MSCs were propagated by the explant culture method, and cells at the second passage were induced with differentiation medium containing all-trans retinoic acid for 2 weeks. Putative germ cells were cultured with Sertoli cell-conditioned medium at $36^{\circ}C$ for 3 more weeks. Results: The gene expression profile was consistent with the stage-specific development of germ cells. The expression of Oct4 and Plzf (early germ cell markers) was diminished, while Stra8 (a premeiotic marker), Scp3 (a meiotic marker), and Acr and Prm1 (postmeiotic markers) were upregulated during the induction period. In morphological studies, approximately 5% of the cells were secondary spermatocytes that had completed two stages of acrosome formation (the Golgi phase and the cap phase). A few spermatid-like cells that had undergone the initial stage of tail formation were also noted. Conclusion: Human WJ-MSCs can be transdifferentiated into more advanced stages of germ cells by a simple two-step induction protocol using retinoic acid and Sertoli cell-conditioned medium.

Variation of Essential Oil Content and Its Composition during Callus Subculture of Peppermint (Mentha piperita) (페퍼민트 캘러스 계대배양 기간 중 정유함량과 성분변화)

  • Park, Jung-Suk;Park, Woo-Tae;Kim, Haeng-Hoon;Park, Sang-Un
    • Korean Journal of Agricultural Science
    • /
    • v.37 no.3
    • /
    • pp.373-376
    • /
    • 2010
  • Peppermint (Mentha piperita L.) belongs to a member of the mint family (Lamiaceae) and is widely used in food, cosmetics and medicines. This study was carried to investigate the variation of essential oil content and its composition during callus subculture of M. piperita. For callus induction from the leaf explant of peppermint, the basal medium was supplemented with various concentrations of 2, 4-D. The best callus induction rate (93%) of M. piperita. was obtained in MS medium containing 2 mg/l 2, 4-D. The induced peppermint callus maintained on Lin-Staba medium were studied during a period of 20th subcultures for the stability of essential oil production. Growth rates of peppermint callus increased during prolonged subculture. However, there was a progressive decrease of essential oil content and unstability of monoterpene productions when callus cultures were serially subcultured.

Plant Regeneration from Leaf and Internode Segment Cultures of Boxthorn (Lycium chinense Mill.) (구기자나무의 잎과 마디절편체 배양에 의한 식물체 재생)

  • 김동찬;정해준;민병훈;양덕춘
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.6
    • /
    • pp.329-333
    • /
    • 2001
  • Callus and shoot formation from medicinal crop, Lycium chinense Mill. cv. 'Cheongyang', as influenced by various media, explant sources and plant growth regulators were investigated. The rate of shoots formation, number of shoots, and fresh weight of shoots were the best on MS medium followed by B$_{5}$, WPH, and SH. Callus induction was more effective in leaf than internode segments, and was the best on MS medium containing 0.5 mg/L NAA with 0.2 mg/L BA. Effects of plant growth regulators in shoot formation were more effective in BA than TDA combined with NAA. Shoot formation from callus induced in leaf and internode segments was the best on MS medium containing 0.01 mg/L NAA with 0.2 mg/L BA.

  • PDF

High frequency plant regeneration from transverse thin cell layers in Indian mustard (Brassica juncea L.)

  • Bhuiyan, Mohammed Shafi Ullah;Lim, Yong-Pyo;Min, Sung-Ran;Choi, Kwan-Sam;Liu, Jang-R.
    • Journal of Plant Biotechnology
    • /
    • v.36 no.1
    • /
    • pp.81-86
    • /
    • 2009
  • An efficient and reproducible plant regeneration system was established using transverse thin cell layers (tTCLs) in five cultivars of Brassjca juncea L. The effects of medium conditions, explant types (tTCLs of hypcotyl and cotyledonary petiole) on shoot regeneration were examined in this study. The maximum shoot regeneration frequency was obtained in Murashige and Skoog (MS) medium supplemented with 4 mg/L 6-benzylaminopurine (BA) and 0.2 mg/L 1-naphthaleneacetic acid (NAA). The hypocotyls derived tTCL explants had more shoot regeneration frequency (52%) than the cotyledonary petiole derived tTCL explants. Shoot induction was further improved by the addition of silver nitrate ($AgNO_3$) in the regeneration medium. A significant genotypic effect was also observed between the five cultivars; Rai-5 displayed higher capacities to produce shoots than other cultivars. Regenerated shoots were rooted on MS basal medium without PGRs which induced 90% of roots. The plantlets established in greenhouse conditions with 99% survival, flowered normally and set seeds. The regenerated plants were fertile and identical to source plants.

Effect of Plant Growth Regulators and Medium Salt Strength on In Vitro Propagation of Belamcanda chinensis DC (범부채의 기내증식에 미치는 식물생장조절물질 및 무기염류농도의 효과)

  • 송원섭
    • Korean Journal of Plant Resources
    • /
    • v.10 no.2
    • /
    • pp.114-121
    • /
    • 1997
  • The effects of plant growth regulators on callus formation and organogenesis in shoot tip explant of Belancanda chinensis were examined. Shoot tip explants cultured in full salt strength of MT(Murashige and Tucker) medium containing 2,4-D 1.0 or 2.0mg/l were vigorously formed callus. Full salt strength of MT medium and 1/2 MT medium supplemented with zeatin 1.0mg/l were more effective than that with combination treatments of 2,4-D on the formation of shoots from calli. When shoots regenerated from shoot tips were transplanted into 1/2 MT medium added with 1.0mg/l, 41% of shoots formed roots.

  • PDF

Microprogation And Environment Conditions Affecting On Growth Of In Vitro And Ex Vitro Of A. Formosanus Hay

  • Ket, Nguyen-Van;Paek, Kee-Yoeup
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2002.11b
    • /
    • pp.6-7
    • /
    • 2002
  • The goal of this research was to develop the effectiveness of in vitro culture method for A. formosanus and study the environment in vitro conditions affecting on growth. The first series of experiments were examined to investigate the response of three different basal media, MS (Murashige and Skoog, 1962), Knudson (KC; Knudson, 1946) and modified hyponex on growth and multiplication during in vitro culture. Multiple shoot proliferation was induced in shoot tip explants on Hyponex (H3) media supplemented with BA (1 mg1$^{-1}$) or TDZ (1-2 mg1$^{-1}$). Addition of activated charcoal (1%) to the TDZ containing medium promoted rapid shoot tip proliferation (11.1 shoots per explant) but the same medium had an opposite effect resulting in poor proliferation in the nodal explants. However, the regenerated shoots had slow growth rate and failed to elongate. This problem was overcome by transferring the shoot clumps to a hormone free H3 media supplemented with 2% sucrose and 0.5% activated charcoal. Using bioreactor culture for scaling up was also shown the best way for multiple shoot induction and growth of this plant.(중략)

  • PDF

Change in Levels of Endogenous Hormone and Detection of Adventitious Bud-Related Protein during Culture of Hybrid Poplar Explants

  • Song, Jae-Jin
    • Journal of Plant Biology
    • /
    • v.38 no.2
    • /
    • pp.143-151
    • /
    • 1995
  • Addition of plant growth hormones [0.01 mg/L NAA and 0.2mg/L benzyladenine (BA)] to a woody plant medium stimulated the adventitious bud formation of poplar explants during culture. Endogenous IAA content increased rapidly at the initial culture stage and then decreased, being followed by rapid increment again at the late culture. But the content of trans-zeatin riboside (t-ZR) increased continuously during the culture. Cytoplasmic soluble proteins were analyzed by one- and two-dimensional SDS-PAGE. Increased amount of 40 kD band was detected by one-dimensional electrophoresis using Coomassie Blue staining during the culture and two distinctive proteins whose mol wt is 40,000 were detected by two-dimensional electrophoresis using autoradiography and these proteins were synthesized continuously prior to the adventitious bud formation. When the midvein segments were transferred to the actinomycin D-containing medium, the spots of adventitious bud-related proteins(ABRPs) did not disappeared but weakened in intensity. So, it is concluded that genes coding for the ABRPs are regulated to some degree at the transcriptional level. Also, they were not observed in BA-free medium, suggesting that these proteins be regulated by cytokinin, which made then possible to form the adventitious bud.

  • PDF

Genotype Effect on Somatic Embryogenesis and Plant Regeneration of 15 Aralia elata (두릅나무 15개체의 체세포배 유도 및 식물체 재분화에 미치는 유전자형의 효과)

  • 문흥규;홍용표;김용욱;이재순
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.3
    • /
    • pp.129-134
    • /
    • 2001
  • Winter bud explants from 15 individual angelica tree (Aralia elata) were cultured in vitro to find out optimal conditions for somatic embryo induction as well as plant regeneration. Calli are induced and grown on MS medium supplemented with 1.0 mg/L 2,4-D for 4 weeks and subcultured on a half-strength MS medium without phytohormones to induce somatic embryos. Inter-simple sequence repeat (I-SSR) markers were analyzed with total DNAs extracted from the trees. Genotype effects on somatic embryo induction were examined by cluster analysis. Callus induction rate varied from 58.5 to 100% among the genotypes. Somatic embryo induction rate also greatly varied from 0 to 100% among the genotypes. There was a significant difference in somatic embryo induction rate even among the individual trees that showed close genetic relationships each other. This suggested that somatic embryo induction rate in Aralia elata be influenced by a few major specific genes rather than whole genomic similarity among individual trees. Four individuals of Ulneong-7, Cheju-1, Shingu and China, which are recalcitrant to somatic embryo induction, turned out to have a close genetic relationship, suggesting that both physiological and genetic factors affect somatic embryo induction. The results suggest that genotype selection be the most important factor to achieve an efficient propagation, although cultural optimization through medium and explant manipulation may also play crucial roles in somatic embryogensis as well as plant regeneration of these species.

  • PDF

Plant Regeneration Derived from Leaf Disk Cultures in Purple Sweetpotato (자색고구마의 잎 조직배양을 통한 식물체 재생)

  • Park, Hyae-Jeong;Ahn, Young-Sup;Jeong, Byeong-Choon;Park, Hyeon-Yong
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.245-249
    • /
    • 2003
  • This study was carried out to establish a regeneration system from leaf explant of purple sweetpotato(Ipomoea batatas L.) The optimal concentrations of plant growth regulators for callus induction and shoot formation were determined. The optimal combination for callus formation was 1$\mu$M 2,4-D 5$\mu$M BM, and highest yield of embryogenic calli were observed on Murashige and Skoog basal medium containing 0.5$\mu$M 2,4-D under light condition after 4weeks of culture. Embryogenec callus was subcultured on medium supplemented with 5$\mu$M ABA for 4 days. Subsequently, regeneration of adventitious shoots occurred when these embryogenic calli were transferred onto medium with 3∼6$\mu$M gibberellic acid. Regenerated shoots were developed into normal plantlets.