• Title/Summary/Keyword: Explainable artificial intelligence

Search Result 51, Processing Time 0.03 seconds

Analysis of Input Factors and Performance Improvement of DNN PM2.5 Forecasting Model Using Layer-wise Relevance Propagation (계층 연관성 전파를 이용한 DNN PM2.5 예보모델의 입력인자 분석 및 성능개선)

  • Yu, SukHyun
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.10
    • /
    • pp.1414-1424
    • /
    • 2021
  • In this paper, the importance of input factors of a DNN (Deep Neural Network) PM2.5 forecasting model using LRP(Layer-wise Relevance Propagation) is analyzed, and forecasting performance is improved. Input factor importance analysis is performed by dividing the learning data into time and PM2.5 concentration. As a result, in the low concentration patterns, the importance of weather factors such as temperature, atmospheric pressure, and solar radiation is high, and in the high concentration patterns, the importance of air quality factors such as PM2.5, CO, and NO2 is high. As a result of analysis by time, the importance of the measurement factors is high in the case of the forecast for the day, and the importance of the forecast factors increases in the forecast for tomorrow and the day after tomorrow. In addition, date, temperature, humidity, and atmospheric pressure all show high importance regardless of time and concentration. Based on the importance of these factors, the LRP_DNN prediction model is developed. As a result, the ACC(accuracy) and POD(probability of detection) are improved by up to 5%, and the FAR(false alarm rate) is improved by up to 9% compared to the previous DNN model.

IoT-Based Health Big-Data Process Technologies: A Survey

  • Yoo, Hyun;Park, Roy C.;Chung, Kyungyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.974-992
    • /
    • 2021
  • Recently, the healthcare field has undergone rapid changes owing to the accumulation of health big data and the development of machine learning. Data mining research in the field of healthcare has different characteristics from those of other data analyses, such as the structural complexity of the medical data, requirement for medical expertise, and security of personal medical information. Various methods have been implemented to address these issues, including the machine learning model and cloud platform. However, the machine learning model presents the problem of opaque result interpretation, and the cloud platform requires more in-depth research on security and efficiency. To address these issues, this paper presents a recent technology for Internet-of-Things-based (IoT-based) health big data processing. We present a cloud-based IoT health platform and health big data processing technology that reduces the medical data management costs and enhances safety. We also present a data mining technology for health-risk prediction, which is the core of healthcare. Finally, we propose a study using explainable artificial intelligence that enhances the reliability and transparency of the decision-making system, which is called the black box model owing to its lack of transparency.

A Study on the Prediction of Fuel Consumption of Bulk Ship Main Engine Using Explainable Artificial Intelligence (SHAP을 활용한 벌크선 메인엔진 연료 소모량 예측연구)

  • Hyun-Ju Kim;Min-Gyu Park;Ji-Hwan Lee
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.182-190
    • /
    • 2023
  • This study proposes a predictive model using XGBoost and SHapley Additive exPlanation (SHAP) to estimate fuel consumption in bulk carriers. Previous studies have also utilized ship engine data and weather data. However, they lacked reliability in predicted results and explanations of variables used in the fuel consumption prediction model implementation. To address these limitations, this study developed a predictive model using XGBoost and SHAP. It provides research background, scope, relevant regulations, previous studies, and research methodology. Additionally, it explains the data cleaning method for bulk carriers and verifies results of the predictive model.

Understanding Customer Purchasing Behavior in E-Commerce using Explainable Artificial Intelligence Techniques (XAI 기법을 이용한 전자상거래의 고객 구매 행동 이해)

  • Lee, Jaejun;Jeong, Ii Tae;Lim, Do Hyun;Kwahk, Kee-Young;Ahn, Hyunchul
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.387-390
    • /
    • 2021
  • 최근 전자 상거래 시장이 급격한 성장을 이루면서 고객들의 급변하는 니즈를 파악하는 것이 기업들의 수익에 직결되는 요소로 인식되고 있다. 이에 기업들은 고객들의 니즈를 신속하고 정확하게 파악하기 위해, 기축적된 고객 관련 각종 데이터를 활용하려는 시도를 강화하고 있다. 기존 시도들은 주로 구매 행동 예측에 중점을 두었으나 고객 행동의 전후 과정을 해석하는데 있어 어려움이 존재했다. 본 연구에서는 고객이 구매한 상품을 확정 또는 환불하는 행동을 취할 때 해당 행동이 발생하는데 있어 어떤 요소들이 작용하였는지를 파악하고, 어떤 고객이 환불할 지를 예측하는 예측 모형을 새롭게 제시한다. 예측 모형 구현에는 트리 기반 앙상블 방법을 사용해 예측력을 높인 XGBoost 기법을 적용하였으며, 고객 의도에 영향을 미치는 요소들을 파악하기 위하여 대표적인 설명가능한 인공지능(XAI) 기법 중 하나인 SHAP 기법을 적용하였다. 이를 통해 특정 고객 행동에 대한 각 요인들의 전반적인 영향 뿐만 아니라, 각 개별 고객에 대해서도 어떤 요소가 환불결정에 영향을 미쳤는지 파악할 수 있었다. 이를 통해 기업은 고객 개개인의 의사 결정에 영향을 미치는 요소를 파악하여 개인화 마케팅에 사용할 수 있을 것으로 기대된다.

  • PDF

A Stock trend Prediction based on Explainable Artificial Intelligence (설명 가능 인공지능 기법을 활용한 주가 전망 예측)

  • Kim, Ji Hyun;Lee, Yeon Su;Jung, Su Min;Jo, Seol A;Ahn, Jeong Eun;Kim, Hyun Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2021.11a
    • /
    • pp.797-800
    • /
    • 2021
  • 인공지능을 활용한 주가 예측 모형을 실제 금융 서비스에 도입한 사례가 많아지고 있다. 주식 데이터는 일반적인 시계열 데이터와 다르게 예측을 어렵게 하는 복합적인 요소가 존재하며 주식은 리스크가 큰 자산 상품 중 하나이다. 주가 예측 모형의 활용 가능성을 높이기 위해선 성능을 향상시키는 것과 함께 모델을 해석 가능한 형태로 제시해 신뢰성을 향상시킬 필요성이 있다. 본 논문은 주가 전망 결정 방법에 따른 예측 결과를 비교하고, 설명 가능성을 부여해 모형 개선했다는 것에 의의가 있다. 연구 결과, 주가 전망을 장기적으로 결정할수록 정확도가 증가하고, XAI 기법을 통해 모형의 개선 근거를 제시할 수 있음을 알 수 있었다. 본 연구를 통해 인공지능 모형의 신뢰성을 확보하고, 합리적인 투자 결정에 도움을 줄 수 있을 것으로 기대한다.

A Study on Image Annotation Automation Process using SHAP for Defect Detection (SHAP를 이용한 이미지 어노테이션 자동화 프로세스 연구)

  • Jin Hyeong Jung;Hyun Su Sim;Yong Soo Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.1
    • /
    • pp.76-83
    • /
    • 2023
  • Recently, the development of computer vision with deep learning has made object detection using images applicable to diverse fields, such as medical care, manufacturing, and transportation. The manufacturing industry is saving time and money by applying computer vision technology to detect defects or issues that may occur during the manufacturing and inspection process. Annotations of collected images and their location information are required for computer vision technology. However, manually labeling large amounts of images is time-consuming, expensive, and can vary among workers, which may affect annotation quality and cause inaccurate performance. This paper proposes a process that can automatically collect annotations and location information for images using eXplainable AI, without manual annotation. If applied to the manufacturing industry, this process is thought to save the time and cost required for image annotation collection and collect relatively high-quality annotation information.

Analysis of the impact of mathematics education research using explainable AI (설명가능한 인공지능을 활용한 수학교육 연구의 영향력 분석)

  • Oh, Se Jun
    • The Mathematical Education
    • /
    • v.62 no.3
    • /
    • pp.435-455
    • /
    • 2023
  • This study primarily focused on the development of an Explainable Artificial Intelligence (XAI) model to discern and analyze papers with significant impact in the field of mathematics education. To achieve this, meta-information from 29 domestic and international mathematics education journals was utilized to construct a comprehensive academic research network in mathematics education. This academic network was built by integrating five sub-networks: 'paper and its citation network', 'paper and author network', 'paper and journal network', 'co-authorship network', and 'author and affiliation network'. The Random Forest machine learning model was employed to evaluate the impact of individual papers within the mathematics education research network. The SHAP, an XAI model, was used to analyze the reasons behind the AI's assessment of impactful papers. Key features identified for determining impactful papers in the field of mathematics education through the XAI included 'paper network PageRank', 'changes in citations per paper', 'total citations', 'changes in the author's h-index', and 'citations per paper of the journal'. It became evident that papers, authors, and journals play significant roles when evaluating individual papers. When analyzing and comparing domestic and international mathematics education research, variations in these discernment patterns were observed. Notably, the significance of 'co-authorship network PageRank' was emphasized in domestic mathematics education research. The XAI model proposed in this study serves as a tool for determining the impact of papers using AI, providing researchers with strategic direction when writing papers. For instance, expanding the paper network, presenting at academic conferences, and activating the author network through co-authorship were identified as major elements enhancing the impact of a paper. Based on these findings, researchers can have a clear understanding of how their work is perceived and evaluated in academia and identify the key factors influencing these evaluations. This study offers a novel approach to evaluating the impact of mathematics education papers using an explainable AI model, traditionally a process that consumed significant time and resources. This approach not only presents a new paradigm that can be applied to evaluations in various academic fields beyond mathematics education but also is expected to substantially enhance the efficiency and effectiveness of research activities.

Predicting Accident Vulnerable Situation and Extracting Scenarios of Automated Vehicleusing Vision Transformer Method Based on Vision Data (Vision Transformer를 활용한 비전 데이터 기반 자율주행자동차 사고 취약상황 예측 및 시나리오 도출)

  • Lee, Woo seop;Kang, Min hee;Yoon, Young;Hwang, Kee yeon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.233-252
    • /
    • 2022
  • Recently, various studies have been conducted to improve automated vehicle (AV) safety for AVs commercialization. In particular, the scenario method is directly related to essential safety assessments. However, the existing scenario do not have objectivity and explanability due to lack of data and experts' interventions. Therefore, this paper presents the AVs safety assessment extended scenario using real traffic accident data and vision transformer (ViT), which is explainable artificial intelligence (XAI). The optimal ViT showed 94% accuracy, and the scenario was presented with Attention Map. This work provides a new framework for an AVs safety assessment method to alleviate the lack of existing scenarios.

Development of a Resort's Cross-selling Prediction Model and Its Interpretation using SHAP (리조트 교차판매 예측모형 개발 및 SHAP을 이용한 해석)

  • Boram Kang;Hyunchul Ahn
    • The Journal of Bigdata
    • /
    • v.7 no.2
    • /
    • pp.195-204
    • /
    • 2022
  • The tourism industry is facing a crisis due to the recent COVID-19 pandemic, and it is vital to improving profitability to overcome it. In situations such as COVID-19, it would be more efficient to sell additional products other than guest rooms to customers who have visited to increase the unit price rather than adopting an aggressive sales strategy to increase room occupancy to increase profits. Previous tourism studies have used machine learning techniques for demand forecasting, but there have been few studies on cross-selling forecasting. Also, in a broader sense, a resort is the same accommodation industry as a hotel. However, there is no study specialized in the resort industry, which is operated based on a membership system and has facilities suitable for lodging and cooking. Therefore, in this study, we propose a cross-selling prediction model using various machine learning techniques with an actual resort company's accommodation data. In addition, by applying the explainable artificial intelligence XAI(eXplainable AI) technique, we intend to interpret what factors affect cross-selling and confirm how they affect cross-selling through empirical analysis.

A COVID-19 Chest X-ray Reading Technique based on Deep Learning (딥 러닝 기반 코로나19 흉부 X선 판독 기법)

  • Ann, Kyung-Hee;Ohm, Seong-Yong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.789-795
    • /
    • 2020
  • Many deaths have been reported due to the worldwide pandemic of COVID-19. In order to prevent the further spread of COVID-19, it is necessary to quickly and accurately read images of suspected patients and take appropriate measures. To this end, this paper introduces a deep learning-based COVID-19 chest X-ray reading technique that can assist in image reading by providing medical staff whether a patient is infected. First of all, in order to learn the reading model, a sufficient dataset must be secured, but the currently provided COVID-19 open dataset does not have enough image data to ensure the accuracy of learning. Therefore, we solved the image data number imbalance problem that degrades AI learning performance by using a Stacked Generative Adversarial Network(StackGAN++). Next, the DenseNet-based classification model was trained using the augmented data set to develop the reading model. This classification model is a model for binary classification of normal chest X-ray and COVID-19 chest X-ray, and the performance of the model was evaluated using part of the actual image data as test data. Finally, the reliability of the model was secured by presenting the basis for judging the presence or absence of disease in the input image using Grad-CAM, one of the explainable artificial intelligence called XAI.