• Title/Summary/Keyword: Experiments and CFD analysis

Search Result 185, Processing Time 0.028 seconds

Experimental and numerical study on coupled motion responses of a floating crane vessel and a lifted subsea manifold in deep water

  • Nam, B.W.;Kim, N.W.;Hong, S.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.5
    • /
    • pp.552-567
    • /
    • 2017
  • The floating crane vessel in waves gives rise to the motion of the lifted object which is connected to the hoisting wire. The dynamic tension induced by the lifted object also affects the motion responses of the floating crane vessel in return. In this study, coupled motion responses of a floating crane vessel and a lifted subsea manifold during deep-water installation operations were investigated by both experiments and numerical calculations. A series of model tests for the deep-water lifting operation were performed at Ocean Engineering Basin of KRISO. For the model test, the vessel with a crane control system and a typical subsea manifold were examined. To validate the experimental results, a frequency-domain motion analysis method is applied. The coupled motion equations of the crane vessel and the lifted object are solved in the frequency domain with an additional linear stiffness matrix due to the hoisting wire. The hydrodynamic coefficients of the lifted object, which is a significant factor to affect the coupled dynamics, are estimated based on the perforation value of the structure and the CFD results. The discussions were made on three main points. First, the motion characteristics of the lifted object as well as the crane vessel were studied by comparing the calculation results. Second, the dynamic tension of the hoisting wire were evaluated under the various wave conditions. Final discussion was made on the effect of passive heave compensator on the motion and tension responses.

Effect of bogie fairings on the snow reduction of a high-speed train bogie under crosswinds using a discrete phase method

  • Gao, Guangjun;Zhang, Yani;Zhang, Jie;Xie, Fei;Zhang, Yan;Wang, Jiabin
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.255-267
    • /
    • 2018
  • This paper investigated the wind-snow flow around the bogie region of a high-speed train under crosswinds using a coupled numerical method of the unsteady Realizable $k-{\varepsilon}$ turbulence model and discrete phase model (DPM). The flow features around the bogie region were discussed and the influence of bogie fairing height on the snow accumulation on the bogie was also analyzed. Here the high-speed train was running at a speed of 200 km/h in a natural environment with the crosswind speed of 15 m/s. The mesh resolution and methodology for CFD analysis were validated against wind tunnel experiments. The results show that large negative pressure occurs locally on the bottom of wheels, electric motors, gear covers, while the positive pressure occurs locally on those windward surfaces. The airflow travels through the complex bogie and flows towards the rear bogie plate, causing a backflow in the upper space of the bogie region. The snow particles mainly accumulate on the wheels, electric motors, windward sides of gear covers, side fairings and back plate of the bogie. Longer side fairings increase the snow accumulation on the bogie, especially on the back plate, side fairings and brake clamps. However, the fairing height shows little impact on snow accumulation on the upper region of the bogie. Compared to short side fairings, a full length side fairing model contributes to more than two times of snow accumulation on the brake clamps, and more than 20% on the whole bogie.

Experiments and Numerical Analysis on a System for Collecting Organic Sediment from Seabed (해저유기퇴적물 수거시스템의 실험 및 수치해석)

  • Kim, Do-Jung;Park, Je-Woong;Jeong, Uh-Chul;Kim, Seoung-Gun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.15-20
    • /
    • 2008
  • Contaminated sediments are the actual cause for deterioration of coastal-ecosystem. So the developed countries have been in the process of making an effort to develop new techniques for monitoring and solving this problem since 1960. In this research, suction type pump dredging system of pilot size for collecting the filth from the seabed has been designed and manufactured that can prevent or minimize the secondary pollution by filth diffusion. For the practical use, the application possibility of the developed system has been checked through a system performance test. And, the evaluation of system performance according to the underwater body type has been carried out for system optimization by using CFD. The performance tests for checking the efficiency of sediment collecting system are done under two conditions i.e. when the system is non-operational and when the system is self-propelled. The results of this research showed the possibility of the development of dredging system to remove just the upper parts of filth from seabed.

  • PDF

e-AIRS: Construction of an Aerodynamic Integrated Research System on the e-Science Infrastructure (e-AITS: e-Science 인프라 기반의 항공우주 공력통합연구 환경구축)

  • Kim, Jin-Ho;Yi, Jun-Sok;Ko, Soon-Heum;Ahn, Jae-Wan;Kim, Chong-Am;Kim, Yoon-Hee;Cho, Kum-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.5
    • /
    • pp.428-437
    • /
    • 2008
  • e-AIRS, an abbreviation of ‘e-Aerospace Integrated Research System’, is a virtual organization designed to support the aerospace engineering processes in the e-Science environment. As the first step toward a virtual aerospace engineering organization, the e-AIRS intends to give a full support to aerodynamic research processes. Currently, the e-AIRS can handle both the computational and experimental aerodynamic researches on the e-Science infrastructure. In detail, users can conduct the full CFD(Computational Fluid Dynamics) research processes, request wind tunnel experiments, perform the comparative analysis between computational and experimental resultants and finally collaborate with other researchers using the web portal. The current paper will describe those functions and the internal architecture of the e-AIRS system.

Cooling Performance Study of a Impinging Water Jet System with Heat Sink for High Power LEDs (분사냉각모듈 내에 부착된 히트싱크에 따른 고출력 LED의 냉각성능에 관한 연구)

  • Ku, G.M.;Kim, K.;Park, S.H.;Choi, S.D.;Heo, J.W.
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.6
    • /
    • pp.152-158
    • /
    • 2013
  • The purpose of this study is to investigate cooling performance of high power LEDs from 100 to 200 W class by using a jet impingement cooling module. The numerical analysis of forced convection cooling inside cooling module is carried out using a multi-purpose CFD software, FLUENT 6.3. In the experiments, the LED cooling system consists of jet impingement module, heat exchanger, water reservoir, and pump. In the present study, the cooling performance of jet impingement cooling module is investigated to determine the effect of the heat sink types on the impinging surface, the space and length of fins. Numerical and experimental studies show the reasonable agreement of LED metal PCB temperature between those results and give the optimized design parameters such as the space of fin and the length of fin. Also, the pin fin type of heat sink is found to be more efficient than the plate type heat sink in jet impingement cooling.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

Analysis of Surface Temperature Change and Heat Dissipation Performance of Road Pavement with Buried Circulating Water Piping (열매체 순환수 배관이 매설된 도로 포장체의 표면 온도 변화와 방열 성능 분석)

  • Byonghu Sohn;Muhammad Usman;Yongki Kim
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.2
    • /
    • pp.8-19
    • /
    • 2023
  • Hydronic heated road pavement (HHP) systems have well studied and documented by many researchers. However, most of the systems run on asphalt, only a few are tested with concrete, and there rarely is a comparison between those two common road materials in their heating and cooling performance. The aim of this study is to investigate the thermal performance of the HHP, such as heat dissipation performance in winter season while focusing on the surface temperature of the concrete and asphalt pavement. For preliminary study a small-scale experimental system was designed and installed to evaluate the heat transfer characteristics of the HHP in the test field. The system consists of concrete and asphalt slabs made of 1 m in width, 1 m in length, and 0.25 m in height. In two slabs, circulating water piping was embedded at a depth of 0.12 m at intervals of 0.16 m. Heating performance in winter season was tested with different inlet temperatures of 25℃, 30℃, 35℃ and 40℃ during the entire measurement period. The results indicated that concrete's heating performance is better than that of asphalt, showing higher surface temperatures for the whole experiment cases. However, the surface temperature of both concrete and asphalt pavement slabs remained above 0℃ for all experimental conditions. The heat dissipation performance of concrete and asphalt pavements was analyzed, and the heat dissipation of concrete pavement was greater than that of asphalt. In addition, the higher the set temperature of the circulating water, the higher the heat dissipation. On the other hand, the concrete pavement clearly showed a decrease in heat dissipation as the circulating water set temperature decreased, but the decrease was relatively small for the asphalt pavement. Based on this experiment, it is considered that a circulating water temperature of 20℃ or less is sufficient to prevent road ice. However, this needs to be verified by further experiments or computational fluid dynamic (CFD) analysis.

A comparative study of field measurements of the pressure wave with analytical aerodynamic model for the high speed train in tunnels (고속철도 터널내 압력파 측정과 공기압 해석모델에 대한 기초연구)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Hong, Yoo-Jung;Yoo, Ji-Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.319-332
    • /
    • 2015
  • The pressure wave formed by the piston effects of the train proceeds within the tunnel when a train enters the tunnel with a high speed. Depending on the condition of tunnel exit, the compression waves reflect at a open end, change to the expansion waves, transfer to tunnel entrance back. Due to interference in the pressure waves and running train, passengers experience severe pressure fluctuations. And these pressure waves result in energy loss, noise, vibration, as well as in the passengers' ears. In this study, we performed comparison between numerical analysis and field experiments about the characteristics of the pressure waves transport in tunnel that appears when the train enter a tunnel and the variation of pressure penetrating into the train staterooms according to blockage ratio of train. In addition, a comparative study was carried out with the ThermoTun program to examine the applicability of the compressible 1-D model(based on the Method of Characteristics). Furthermore examination for the adequacy of the governing equations analysis based on compressible 1-D numerical model by Baron was examined.

Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel (경수로핵연료 열수력 연구개발 분석 및 연산학 협력 성과)

  • In, Wang Kee;Shin, Chang Hwan;Lee, Chi Young;Lee, Chan;Chun, Tae Hyun;Oh, Dong Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.12
    • /
    • pp.815-824
    • /
    • 2016
  • The fuel assembly for pressurized water reactor (PWR) consists of fuel rod bundle, spacer grid and bottom/top end fittings. The cooling water in high pressure and temperature is introduced in lower plenum of reactor core and directed to upper plenum through the subchannel which is formed between the fuel rods. The main thermal-hydraulic performance parameters for the PWR fuel are pressure drop and critical heat flux in normal operating condition, and quenching time in accident condition. The Korea Atomic Energy Research Institute (KAERI) has been developing an advanced PWR fuel, dual-cooled annular fuel and accident tolerant fuel for the enhancement of fuel performance and the localization. For the key thermal-hydraulic technology development of PWR fuel, the KAERI LWR fuel team has conducted the experiments for pressure drop, turbulent flow mixing and heat transfer, critical heat flux(CHF) and quenching. The computational fluid dynamics (CFD) analysis was also performed to predict flow and heat transfer in fuel assembly including the spent fuel assembly in dry cask for interim repository. In addition, the research cooperation with university and nuclear fuel company was also carried out to develop a basic thermal-hydraulic technology and the commercialization.

Experimental Verification on the Effect of the Gap Flow Blocking Devices Attached on the Semi-Spade Rudder using Flow Visualization Technique (유동가시화를 이용한 혼-타의 간극유동 차단장치 효과에 관한 실험적 검증)

  • Shin, Kwangho;Suh, Jung-Chun;Kim, Hyochul;Ryu, Keuksang;Oh, Jungkeun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.324-333
    • /
    • 2013
  • Recently, rudder erosion due to cavitation has been frequently reported on a semi-spade rudder of a high-speed large ship. This problem raises economic and safety issues when operating ships. The semi-spade rudders have a gap between the horn/pintle and the movable wing part. Due to this gap, a discontinuous surface, cavitation phenomenon arises and results in unresolved problems such as rudder erosion. In this study, we made a rudder model for 2-D experiments using the NACA0020 and also manufactured gap flow blocking devices to insert to the gap of the model. In order to study the gap flow characteristics at various rudder deflection angles($5^{\circ}$, $10^{\circ}$, $35^{\circ}$) and the effect of the gap flow blocking devices, we carried out the velocity measurements using PIV(Particle Image Velocimetry) techniques and cavitation observation using high speed camera in Seoul National University cavitation tunnel. To observe the gap cavitation on a semi-spade rudder, we slowly lowered the inside pressure of the cavitation tunnel until cavitation occurred near the gap and then captured it using high-speed camera with the frame rate of 4300 fps(frame per second). During this procedure, cavitation numbers and the generated location were recorded, and these experimental data were compared with CFD results calculated by commercial code, Fluent. When we use gap flow blocking device to block the gap, it showed a different flow character compared with previous observation without the device. With the device blocking the gap, the flow velocity increases on the suction side, while it decreases on the pressure side. Therefore, we can conclude that the gap flow blocking device results in a high lift-force effect. And we can also observe that the cavitation inception is delayed.