• 제목/요약/키워드: Experimental tissue defect

검색결과 135건 처리시간 0.024초

백서에서 수종의 골대체재료 매식후 치유과정에 관한 실험적 연구 (AN EXPERIMENTAL STUDY ON THE HEALING PROCESS AFTER THE IMPLANTATION OF VARIOUS BONE SUBSTITUTES IN THE RATS)

  • 김영균;김수관;이준길;이미향;조재오
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제27권1호
    • /
    • pp.15-24
    • /
    • 2001
  • The purpose of this study is to evaluate the tissue response in applying of various bone substitutes included toothash-plaster mixture, resorbable hydroxylapatite (HA) and demineralized freeze-dried bone and to show the clinical usefulness of toothash-plaster mixture for the repair of craniomaxillofacial bone defect. For this experiment, 100 Sprague-Dawley rats weighing 200gm or more were used. There were four experimental groups: group I, toothash-plaster mixture; group II, demineralized freeze-dried bone; group III, resorbable HA; and group IV, control group. A full thickness, round bone defect measuring 10mm in diameter was created in the midcranium, and the substitutes cited above were embedded in the experimental rats based on their group assignment. Blood clot was filled in the rats assigned to the control group. Experimental rats were sacrificed on the 1st, 3rd, 5th, 8th, 12th and 24th week after implantation and stained with the hematoxylineosin, Masson's Trichrome, using Van Gieson's stain method, and were examined under light microscope. The results were as follows: 1. In all the groups, prominent inflammatory reaction and the infiltration of multinucleated giant cells were noted during the early stage. Gradual healing decreased this reaction. 2. Among the rats in the experimental group II, which were given demineralized freeze-dried bone implants, active formation of new bone traveculae manifested. Chondroid tissues appeared, and it was suggested that the defect was filled with newly formed bone by virtue of osteoinductive activity. On the 12th week after the experiments, most of the defect was filled with newly formed bone trabeculae. 3. In experimental groups I and III, it was noted that HA manifested a healing process similar to that characterized by the toothash-plaster mixture, but inflammatory reaction was more prominent in experimental group I. Active osteoblasts were observed along the periphery of osteoid tissues, while newly formed bone trabeculae appeared adjacent to the implanted materials three weeks later. Formation increased to the extent that newly formed bone trabeculae fused directly with the host bone. Increase in new bone ingrowth into the filling materials was revealed by both experimental groups. 4. In the control group, new bone formation adjacent to the host bone was observed, but most of the defect was filled with mature connective tissue 24 weeks after the experiments.

  • PDF

실험적 골 병소에 대한 콘빔형전산화단층영상과 초음파영상의 비교 (Comparison of cone-beam computed tomography and ultrasonography on experimental bone lesion)

  • 김민성;박철우;김규태;최용석;황의환
    • Imaging Science in Dentistry
    • /
    • 제40권3호
    • /
    • pp.137-142
    • /
    • 2010
  • Purpose : This study was performed to evaluate the diagnostic ability of ultrasonography in detection of bone defects and new bone formation. Materials and Methods : Experimental bony defects were prepared on the parietal bone samples acquired from 3.5 kg New Zealand male rabbits. The defects were evaluated using ultrasonography and CBCT, and examined histologically at interval of 1, 3, 6, and 8 weeks. Results : Ultrasonograph demonstrated hyperechogenicity in the defect area at 3 weeks and broadened hyperechogenicity from the margin of bone defect at 6 and 8 weeks due to new bone formation. On the CBCT images, new bone formation was first observed at 3 weeks around the margin of the defect, and showed gradually increase at 6 and 8 weeks. Histologic findings revealed existence of the fibroblasts and fibrous connective tissue with abundant capillary vessels only at 1 week, but osteoid tissue and newly formed trabecular bone at 3 weeks. Bone remodeling in the defect area was observed at 6 weeks and increased calcification and dense trabecular bone formation was observed at 8 weeks. Conclusions : Ultrasonograph proved to be a very useful diagnostic tool in detecting the bony defect and new bone formation. Additionally, ultrasonography provided valuable information regarding the blood supply around the defect area.

Poly(alpha-hydroxy acids) 제제 생분해성 차폐막의 치주조직 재생유도능력에 관한 조직학적 장기관찰 (The long-term study on the guided tissue regeneration with poly(${\alpha}-hydroxy\;acid$} membranes in beagle dogs)

  • 류인철;구영;정종평;한수부;최상묵
    • Journal of Periodontal and Implant Science
    • /
    • 제27권3호
    • /
    • pp.633-645
    • /
    • 1997
  • The recent trend of research and development on guided tissue regeneration focuses on the biodegradable membranes, which eliminate the need for subsequent surgical removal. They have demonstrated significant and equivalent clinical improvements to the ePTFE membranes. This study evaluate guided tissue regeneration wound healing in surgically induced intrabony periodontal defects following surgical treatment with a synthetic biodegradable membranes, made from a copolymer of glycolide and lactide, in 8 beagle dogs. After full thickeness flap reflection, exposed buccal bone of maxillary and mandibular canine and premolar was removed surgically mesiodistally and occlusoapically at $6mm{\times}6mm$ in size for preparation of periodontal defects. In experimental sites a customized barrier was formed and fitted to cover the defect. Flap was replaced slightly coronal to CEJ and sutured. Plaque control program was initiated and maintained until completion of the study. In 4, 8, 16 and 24 weeks after surgery, the animals were sacrificed and then undecalcified specimens were prepared for histologic evaluation. Histologic examination indicated significant periodontal regeneration characterized by new connective tissue attachment, cementum formation and bone formation. These membranes showed good biocompatibility throughout experiodontal period. The barriers had been completely resorbed with no apparent adverse effect on periodontal wound healing at 24 weeks. These results implicated that present synthetic biodegradable membrane facilitated guided tissue regeneration in periodontal defect.

  • PDF

수종의 재생 술식 시행이 매식체 근원심부의 골재생에 미치는 영향 (The Effects of various Regeneration techniques on Bone Regeneration around Dental Implant)

  • 이명자;임성빈;정진형;홍기석
    • Journal of Periodontal and Implant Science
    • /
    • 제35권2호
    • /
    • pp.383-399
    • /
    • 2005
  • The successful implantation necessitate tissue regeneration m site of future implant placement, there being severe bone defect. Therapeutic approaches to tissue regeneration in the site have used bone grafts, root surface treatments, barrier membranes, and growth factors, the same way being applied to periodontal tissue regeneration. Great interest in periodontal tissue regeneration has lead to research in bone graft, guided-tissue regeneration, and the administration of growth factors as possible means of regenerating lost periodontal tissue. The blood component separated by centrifuging the blood is the platelet-rich plasma. There are growth factors, PDGF, $TGF{beta}1$, $TGF{beta}2$ and IGF in the platelet-rich plasma. The purpose of this study was to study the histopathological correlation between the use of platelet-rich plasma and the healing of bone defect around implant fixture site. Implant fixtures were inserted and graft materials were placed into the left femur of in the experimental group, while the control group received only implant fixtures. In the first experimental group, platelet-rich plasma and BBP xenograft were placed at the implant fixture site, and the second experimental group had platelet-rich plasma, BBP xenograft, and the e-PTFE membrane placed at the fixture site. The degree of bone regeneration adjacent to the implant fixture was observed and compared histopathologically at 2, 4, and 8 weeks after implant fixture insertion. The results of the experiment were as follows: 1. Bone remodeling in acid etched surface near the implant fixture of all experimental groups was found to be greater than new bone formation. 2. Bone remodeling in acid etched surface distant to the implant fixture of all experimental groups was decreased and new bone formation was not changed. 3. Significant new bone formation in machined surface near the implant fixture of bothl experimental groups was observed in 2 weeks. 4. New bone formation in machined surface distant to the implant fixture of both experimental groups was observed. Bone remodeling was significant in near the implant fixture and not in distant to the implant fixture. The results of the experiment suggested that the change of bone formation around implant. Remodeling in machined surface distant to the implant fixture of both experimental groups, and new bone formation and remodeling near the implant fixture were significant.

성견 치주 골결손부에서의 수종의 차단막에 의한 치주조직 재생 효과;조직계측학적 메타 분석 (Effects of various membranes on periodontal tissue regeneration;a meta-analysis of the histomorphometry)

  • 이중석;임현창;채경준;정의원;김창성;이용근;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제37권3호
    • /
    • pp.465-478
    • /
    • 2007
  • Various periodontal barrier membranes used in many clinical and experimental fields, and many recent studies of membranes have reported good results. To improve clinical results, selection of barrier membranes is an important factor. So, we need not only to evaluate various barrier mem-branes, but also to understand the property of barrier membranes appropriate to defect characteristics. For this purpose, this study reviewed available literature, evaluated comparable experimental models, and compared various barrier membranes. From above mentioned methods, the following conclusions are deduced. 1. In i-wall periodontal defect models, new bone formation showed a consistent result, almost 30% of the defect size. New cementum formations measured mostly 40% of the defect size, but showed more variations than new bone formations. This seems to be resulted form difference in experimental methods, so standardization in experimental methods is needed for future studies. 2. Application PLGA barrier membrane to periodontal defect demonstrated improved healing in new bone and new cementum. 3. There was a minimal periodontal regeneration with calcium sulfate barrier membrane only. But, there was better healing pattern in combination of calcium sulfate membrane with bone graft material, such as DFDBA, 4. There was no significant difference between the experimental group that used chitosan mem-brane only and the control group. But, in combination with bone graft material for space maintanence, periodontal regeneration was improved. Overall, Space maintenance is a critical factor for Guided tissue regeneration using barrier membranes. Also, a barrier membrane itself that has difficulty in maintaining space, achieved better result when used with graft material.

백서에서 흡수성막과 탈회동결건조골을 이용한 두개골결손부의 골재생 (GUIDED BONE REGENERATION OF CALVARIAL BONE DEFECTS USING BIOABSORBABLE MEMBRANE AND DEMINERALIZED FREEZE DRIED BONE IN RATS)

  • 김수민;여환호;김수관;임성철
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권4호
    • /
    • pp.290-301
    • /
    • 2002
  • The purpose of this study was to evaluate new bone formation and healing process in rat calvarial bone defects using $BioMesh^{(R)}$. membrane and DFDB. Forty eight rats divided equally into 4 groups of 1 control group and 3 experimental groups. Standardized transosseous circular calvarial defects (8 mm in diameter) were made midparietally. In the control group, the defect was only covered with the soft tissue flap. In the experimental group 1, it was filled with DFDB only, in the experimental group 2, it was covered $BioMesh^{(R)}$. membrane only, and in the experimental group 3, it was filled DFDB and covered with membrane. At the postoperative 1, 2, 4, 8 weeks, rats were sacrificed and histologic and histomorphometric analysis were performed. These results were as follows. In histomorphometric analysis, It showed the greatest amount of new bone formation through experimental in the experimental group 3 (P<0.001). The amount of new bone formation at the central portion of the defect was greater in the experimental group 3 than experimental group 2. $BioMesh^{(R)}$. membrane began to resorb at 1 week and resorbed almost completely at 8 weeks after operation. The collapse of membrane into the defect was observed through the experimental periods in the experimental group 2. In the area of collapsed membrane, new bone formation was restricted. These results suggest that maintenance of some space for new bone to grow is required in the use of $BioMesh^{(R)}$. membrane alone in the defect. It is also thought that use of the membrane may promote new bone growth in DFDB graft.

가토 두개부 골결손에서 맥동전자기장이 골형성에 미치는 영향에 관한 연구 (A STUDY OF EFFECT OF PULSED ELECTROMAGNETIC FIELDS ON OSTEOGENESIS IN RABBIT CRANIAL BONE DEFECT)

  • 황경균;이종환;김명진;심광섭;김종원
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제28권4호
    • /
    • pp.264-273
    • /
    • 2002
  • Pulsed electromagnetic field (PEMF) was used first to induce osteogenesis in 1974. The appliance which was consisted of the Helmholtz coil configuration have used to osteogensis. The objective of this study was to determine whether PEMF, a frequency of 100 Hz and magnetic field strength of 38 gauss applied to the calvarial defect in rabbit, could affect the induction of osteogenesis and the healing of the graft bone. This field should not produce excitation of nerve or muscle and heating the tissue. To evaluate the effect of PEMF on osteogenesis, 16 rabbit under the same condition was divided into 8 experimental groups and 8 control groups. 10 mm calvarial bone defects were formed around sagittal suture. The defect of left side was left without graft while the defect of right side was grafted by bone harvested from left side. A pulsed electromagnetic field was applied for 8 hours per day. Each group was sacrificed after 1 week, 2 weeks, 4 weeks, 8 weeks. Microscopic specimens were obtained from the calvarial bone defects and surrounding tissue using Hematoxylin-Eosin staining method. The results were as follows. 1. In the group which pulsed electromagnetic field was applied, new bone formation filled up the defect was observed after 4 and 8 weeks effectively. 2. There are no difference in the healing period for the fusion between the bone and graft bone. According to the result, the PEMF with 38 Gauss, 100 Hz was very effective in the healing of bone defect and new bone formation. So The PEMF will be useful in clinical aspect for oseteogenesis.

흡수성 차폐막으로 조직 유도 재생술시 골이식재가 성견 치주조직 재생에 미치는 영향 (The Effect of Calcium-Phosphate Bovine Bone Powder on Guided Tissue Regeneration Using Biodegradable Membrane in Dogs)

  • 박종범;임성빈;정진형;김종여
    • Journal of Periodontal and Implant Science
    • /
    • 제30권1호
    • /
    • pp.167-180
    • /
    • 2000
  • The present study evaluated the effects of guided tissue regeneration using biodegradable membrane, with and without calcium-phosphate thin film coated deproteinated bone powder in beagle dogs. Contralateral fenestration defects(6 × 4 mm) were created 4 mm apical to the buccal alveolar crest on maxillary canine teeth in 5 beagle dogs. Ca-P thin film coated deproteinated bone powder was implanted into one randomly selected fenestration defect(experimental group). Biodegradable membranes were used to provide bilateral GTR. Tissue blocks including defects with overlying membranes and soft tissues were harvested following a four- & eight-week healing interval and prepared for histologic analysis. The results of this study were as follows. 1.......The regeneration of new bone, new periodontal ligament, and new cementum was occurred in experimental group more than control group. 2.......The collapse of biodegradable membranes into defects were showed in control group and the space for regeneration was diminished. In experimental group, the space was maintained without collapse by graft materials. 3........In experimental group, the graft materials were resorbed at 4 weeks after surgery and regeneration of bone surrounding graft materials was occurred at 8 weeks after surgery. 4.......Biodegradable membranes were not resorbed at 4 weeks and partial resorption was occurred at 8 weeks but the framework and the shape of membranes were maintained. No inflammation was showed at resorption. In conclusion, the results of the present study suggest that Ca-P thin film coated deproteinated bone powder has adjunctive effect to GTR in periodontal fenestration defects. Because it has osteoconductive property and prohibit collapse of membrane into defect, can promote regeneration of much new attachment apparatus.

  • PDF

백서두개골 결손부에서 키토산/흡수성 콜라겐 전달체의 골재생 (The effect of chitosan/ACS on bone regeneration in rat calvarial defects)

  • 김수경;석헌주;김창성;조규성;채중규;김종관;최성호
    • Journal of Periodontal and Implant Science
    • /
    • 제33권3호
    • /
    • pp.457-474
    • /
    • 2003
  • The ultimate objective of periodontal treatment is to get rid of an on-going periodontal disease and further regenerate the supporting tissue, which is already destroyed, functionally. Currently, the bone grafting operation using various kinds of bone grafting materials and the operation for induced regeneration of periodontal tissue using the blocking membrane are performed for regeneration of the destroyed periodontal tissue. However, there are respective limitations Galenical preparations, which are used for regeneration of periodontal of tissue, has less risk of rejective reaction or toxicity that may be incidental to degradation and their effect is sustainable. Thus, in case they are applicable to a clinic, they can he used economically. Chitosan has such compatibility, biological actions including antibacterial activity, acceleration of wound treatment, etc., and excellent mechanical characteristics, which has recently aroused more interest in it. Also, it has been reported that it promotes osteogenesis directly or indirectly by functioning as a matrix to promote migration and differentiation of a specific precussor cell (for example, osteoblast) and further inhibiting the function of such a cell as fibroblast to prevent osteogenesis. In this study, the pure chitosan solution, which was obtained by purifying chitosan, was used. However, since this chitosan is of a liquiform, it is difficult to sustain it in a defective region. It is, therefore, essential to use a carrier for delivering chitosan to, and sustaining it gradually in the defective region. In the calvarial defect model of the Sprague-Dawley rat, it is relatively easy to maintain a space. Therefore, in this study, the chitosan solution with which ACS was wetted was grafted onto the defective region, For an experimental model, a calvarial defect of rat m s selected, and a critical size of the defective region was a circular defect with a diameter of 8 mm. A group in which no treatment was conducted for the calvarial defect was set as a negative control group. Another group in which treatment was conducted with ACS only was set as a positive control group (ACS group). And another group in which treatment was conducted was conducted with by grafting the pure chitosan solution onto the defective region through ACS which was wetted with the chitosan solution was set an experimental group (Chitosan/ACS group). Chitosan was applied to the Sprague-Dawley rat's calvarial bone by applying ACS which was wetted with the chitosan solution, and each Sprague-Dawley rat was sacrificed respectively 2 weeks and 8 weeks after the operation for such application. Then, the treatment results were compared and observed histologically and his tometrically. Thereby, the following conclusions were obtained. 1. In the experimental group, a pattern was shown that from 2 weeks after the operation, vascular proliferation proceeded and osteogenesis proceeded through osteoblast infiltration, and at 8 week after the operation, ACS was almost absorbed, the amount of osteogensis was increased and many osteoid tissue layers were observed. 2. At 2 weeks after the operation, each amount of osteogenesis appeared to be 8.70.8 %, 13.62.3 % and 4.80.7 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be higher in the Experimental group and the positive control group than in the negative control group, but there was no significant difference statistically (p<0.01). 3. At 8 weeks after the operation, each amount of osteogenesis appeared to be 62.26.1%, 17.42.5 % and 8.21.4 % respectively in the experimental group, the positive control group and the negative control group. Accordingly, it appeared to be substantially higher in the experimental group than in the positive control group and the negative control group, and there was a significant difference statistically (p<0.01). As a result of conducting the experiment, when ACS was used as a carrier for chitosan, chitosan showed effective osteogenesis in the perforated defective region of the Sprague-Dawley rat's calvarial bone.

Evaluation of Bilayer Polycaprolactone Scaffold for Osteochondral Regeneration in Rabbits

  • Park, Min-hyeok;Hwang, Ya-won;Jeong, Do-Sun;Kim, Gon-hyung
    • 한국임상수의학회지
    • /
    • 제33권6호
    • /
    • pp.332-339
    • /
    • 2016
  • Polycaprolactone (PCL) scaffold have been developed as an alternative to natural donor tissue to repair a large osteochondral defect. The objective of this study is to evaluate efficacy and biocompatibility of bilayer PCL scaffold implanted for osteochondral repair in rabbit. Twenty-two male New Zealand White rabbits were used in this animal experiment. Rabbits were divided into three groups. Experimental surgery was carried out under general anesthesia. Osteochondral defects (5 mm diameter and 5 mm deep) were made in the center of the patellar groove using a 5 mm diameter biopsy punch. In group I (3D plotting) and group II (salt-leaching), the scaffold was implanted using the press-fitted technique into the defect. In control group, after osteochondral defect was created, the defect was left without implant. After four and eight weeks, rabbits were sacrificed and the defects were evaluated by macro -and microscopical methods. There were not found animal death and severe inflammatory evidence during the experimental periods. There were no significant differences between the experimental groups in gross evaluation. However the group I scored significantly higher than group II at 8 weeks in histological evaluation (P < 0.05). The 3-D plotting PCL scaffold was more suitable method for reconstruction of osteochondral defect than a salt-leaching PCL scaffold.