• Title/Summary/Keyword: Experimental testbed

Search Result 87, Processing Time 0.029 seconds

Handover Monitoring with Flow-based Traffic Measurement in Mobile IPv6 Routers (모바일 IPv6 라우터에서 플로우 측정을 이용한 핸드오버 모니터링)

  • Son, Hyeon-Gu;Choi, NaK-Jung;Choi, Yang-Hee;Lee, Young-Seok
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.5
    • /
    • pp.397-404
    • /
    • 2009
  • In this paper, we propose a method of monitoring traffic and analyzing information of handover in mobile IPv6 networks. Our proposed method analyzes handover latency through monitoring packets at routers without installing monitoring applications at mobilenodes. For this purpose, we employ a flow-based traffic monitoring standard called IPFIX to perform the traffic measurement function the packets at the routers. Therefore, our method is useful in that we could easily obtain information regarding handover of mobile nodes by only monitoring traffic at the routers. In order to verify the proposed method, we carried out experiments in a real 802.11-based mobile IPv6 network testbed. From our experimental results, it was shown that the calculated handover latency for uploading traffic is accurate with less accuracy of analyzing the handover latency for downloading traffic.

An Improvement of Packet Filtering Functions for Tunneling Based IPv4/IPv6 Transition Mechanisms (터널링 기반 IPv4/IPv6 전이 기법을 위한 패킷 필터링 기능 개선)

  • Lee, Wan-Jik;Heo, Seok-Yeol;Lee, Won-Yeoul;Shin, Bum-Joo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.17 no.6
    • /
    • pp.77-87
    • /
    • 2007
  • It will need a quite long time to replace IPv4 protocol, which currently used, with IPv6 protocol completely, thus we will use both IPv4 and IPv6 together in the Internet during the period. For coexisting protocols, IETF standardized various IPv4/IPv6 transition mechanisms. However, new security problems of IPsec adaptation and IPv6 packet filtering can be raised by tunneling mechanism which mainly used in transition mechanisms. To resolve these problems, we suggested two improved schemes for packet filtering functions, which consists of an inner header filtering scheme and a dedicated filtering scheme for IPv4/IPv6 transition mechanisms. Also we implemented our proposed schemes based on Linux Netfilter framework, and we tested their filtering functions and evaluated experimental performance of our implementation on IPv4/IPv6 transition testbed. These evaluation tests indicated that our improved packet filtering functions can solve packet filtering problems of IPv4/IPv6 transition mechanisms without severely affecting system performance.

Seismic behavior of caisson-type gravity quay wall renovated by rubble mound grouting and deepening

  • Kim, Young-Sang;Nguyen, Anh-Dan;Kang, Gyeong-O
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.447-463
    • /
    • 2021
  • Caisson-type structures are widely used as quay walls in coastal areas. In Korea, for a long time, many caisson-type quay walls have been constructed with a low front water depth. These facilities can no longer meet the requirements of current development. This study developed a new technology for deepening existing caisson-type quay walls using grouting and rubble mound excavation to economically reuse them. With this technology, quay walls could be renovated by injecting grout into the rubble mound beneath the front toe of the caisson to secure its structure. Subsequently, a portion of the rubble mound was excavated to increase the front water depth. This paper reports the results of an investigation of the seismic behavior of a renovated quay wall in comparison to that of an existing quay wall using centrifuge tests and numerical simulations. Two centrifuge model tests at a scale of 1/120 were conducted on the quay walls before and after renovation. During the experiments, the displacements, accelerations, and earth pressures were measured under five consecutive earthquake input motions with increasing magnitudes. In addition, systematic numerical analyses of the centrifuge model tests were also conducted with the PLAXIS 2D finite element (FE) program using a nonlinear elastoplastic constitutive model. The displacements of the caisson, response accelerations, deformed shape of the quay wall, and earth pressures were investigated in detail based on a comparison of the numerical and experimental results. The results demonstrated that the motion of the caisson changed after renovation, and its displacement decreased significantly. The comparison between the FE models and centrifuge test results showed good agreement. This indicated that renovation was technically feasible, and it could be considered to study further by testbed before applying in practice.

Design and Implementation of Network-Adaptive High Definition MPEG-2 Streaming employing frame-based Prioritized Packetization (프레임 기반의 우선순위화를 적용한 네트워크 적응형 HD MPEG-2 스트리밍의 설계 및 구현)

  • Park SangHoon;Lee Sensjoo;Kim JongWon;Kim WooSuk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.886-895
    • /
    • 2005
  • As the networked media technology have been grown in recent, there have been many research works to deliver high-quality video such as HDV and HDTV over the Internet. To realize high-quality media service over the Internet, however, the network adaptive streaming scheme is required to adopt to the dynamic fluctuation of underlying networks. In this paper, we design and implement the network-adaptive HD(high definition) MPEG-2 streaming system employing the frame-based prioritized packetization. Delivered video is inputted from the JVC HDV camera to the streaming sewer in real-time. It has a bit-rate of 19.2 Mbps and is multiplexed to the MPEG-2 TS (MPEG-2 MP@HL). For the monitoring of network status, the packet loss rate and the average jitter are measured by using parsing of RTP packet header in the streaming client and they are sent to the streaming server periodically The network adaptation manager in the streaming server estimates the current network status from feedback packets and adaptively adjusts the sending rate by frame dropping. For this, we propose the real-time parsing and the frame-based prioritized packetization of the TS packet. The proposed system is implemented in software and evaluated over the LAN testbed. The experimental results show that the proposed system can enhance the end-to-end QoS of HD video streaming over the best-effort network.

Network-Adaptive HD Video Streaming with Cross-Layered WLAM Channel Monitoring (Cross Layer 기반의 무선랜 채널 모니터링을 적용한 네트워크 적응형 HD 비디오 스트리밍)

  • Park Sang-Hoon;Yoon Ha-Young;Kim Jong-Won;Cho Chang-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4A
    • /
    • pp.421-430
    • /
    • 2006
  • In this paper, we propose a practical implementation of network-adaptive HD(high definition) MPEG-2 video streaming with a cross-layered channel monitoring(CLM) over the IEEE 802.11a WLAN(wireless local area network). For wireless channel monitoring, AP(access point) periodically measures the MAC(medium access control) layer transmission information and sends the monitoring information to a streaming server. This makes that the streaming server reacts more quickly as well as efficiently to the fluctuated wireless channel than that of the end-to-end monitoring(E2EM) scheme for the video adaptation. The streaming sewer dynamically performs the priority-based frame dropping to adjust the video sending rate according to the measured wireless channel condition. For this purpose, our streaming system nicely provides frame-based prioritized packetization by using a real-time stream parsing module. Various evaluation results over an IEEE 802.11a WLAM testbed are provided to verify the intended QoS adaptation capability The experimental results show that the proposed system can effectively mitigate the quality degradation of video streaming caused by the fluctuations of time-varying wireless channel condition.

The Design of Manufacturing Simulation Modeling Based on Digital Twin Concept (Digital Twin 개념을 적용한 제조환경 시뮬레이션 모형 설계)

  • Hwang, Sung-Bum;Jeong, Suk-Jae;Yoon, Sung-Wook
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.2
    • /
    • pp.11-20
    • /
    • 2020
  • As the manufacturing environment becomes more complex, traditional simulation models alone are having a lot of difficulties in reflecting real-time manufacturing situations. Although the Digital Twin concept is actively discussed as an alternative to overcome theses issues, many studies are being carried out only in the product design phase. This research presents a Digital Twin-based manufacturing environment framework for applying the Digital Twin concept to the manufacturing process. Twin model that is operated in virtual space, physical system and databases describing the actual manufacturing environment, are proposed as detailed components that make up the framework. To check the applicability of proposed framework, a simple Digital Twin-based manufacturing system was simulated in a conveyor system using Arena software and Excel VBA. Experiment results have shown that the twin model is transmitted real time data from the physical system via DB and were operating in the same time unit. The Excel VBA fitted parameters defined by cycle time based on historical data that real-time and training data are being accumulated together. This study proposes operating method of digital twin model through the simple experiment examples. The results lead to the applicability of Digital twin model.

Highly Reliable Fault Detection and Classification Algorithm for Induction Motors (유도전동기를 위한 고 신뢰성 고장 검출 및 분류 알고리즘 연구)

  • Hwang, Chul-Hee;Kang, Myeong-Su;Jung, Yong-Bum;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.18B no.3
    • /
    • pp.147-156
    • /
    • 2011
  • This paper proposes a 3-stage (preprocessing, feature extraction, and classification) fault detection and classification algorithm for induction motors. In the first stage, a low-pass filter is used to remove noise components in the fault signal. In the second stage, a discrete cosine transform (DCT) and a statistical method are used to extract features of the fault signal. Finally, a back propagation neural network (BPNN) method is applied to classify the fault signal. To evaluate the performance of the proposed algorithm, we used one second long normal/abnormal vibration signals of an induction motor sampled at 8kHz. Experimental results showed that the proposed algorithm achieves about 100% accuracy in fault classification, and it provides 50% improved accuracy when compared to the existing fault detection algorithm using a cross-covariance method. In a real-world data acquisition environment, unnecessary noise components are usually included to the real signal. Thus, we conducted an additional simulation to evaluate how well the proposed algorithm classifies the fault signals in a circumstance where a white Gaussian noise is inserted into the fault signals. The simulation results showed that the proposed algorithm achieves over 98% accuracy in fault classification. Moreover, we developed a testbed system including a TI's DSP (digital signal processor) to implement and verify the functionality of the proposed algorithm.