• Title/Summary/Keyword: Experimental platform

Search Result 701, Processing Time 0.026 seconds

Damage and vibrations of nuclear power plant buildings subjected to aircraft crash part II: Numerical simulations

  • Li, Z.R.;Li, Z.C.;Dong, Z.F.;Huang, T.;Lu, Y.G.;Rong, J.L.;Wu, H.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.9
    • /
    • pp.3085-3099
    • /
    • 2021
  • Investigations of large commercial aircraft impact effect on nuclear power plant (NPP) buildings have been drawing extensive attentions, particularly after the 9/11 event, and this paper aims to numerically assess the damage and vibrations of NPP buildings subjected to aircrafts crash. In Part I of present paper, two shots of reduce-scaled model test of aircraft impact on NPP were conducted based on the large rocket sled loading test platform. In the present part, the numerical simulations of both scaled and prototype aircraft impact on NPP buildings are further performed by adopting the commercial program LS-DYNA. Firstly, the refined finite element (FE) models of both scaled aircraft and NPP models in Part I are established, and the model impact test is numerically simulated. The validities of the adopted numerical algorithm, constitutive model and the corresponding parameters are verified based on the experimental NPP model damages and accelerations. Then, the refined simulations of prototype A380 aircraft impact on a hypothetical NPP building are further carried out. It indicates that the NPP building can totally withstand the impact of A380 at a velocity of 150 m/s, while the accompanied intensive vibrations may still lead to different levels of damage on the nuclear related equipment. Referring to the guideline NEI07-13, a maximum acceleration contour is plotted and the shock damage propagation distances under aircraft impact are assessed, which indicates that the nuclear equipment located within 11.5 m from the impact point may endure malfunction. Finally, by respectively considering the rigid and deformable impacts mainly induced by aircraft engine and fuselage, an improved Riera function is proposed to predict the impact force of aircraft A380.

Single cell heterogeneity in human pluripotent stem cells

  • Yang, Seungbok;Cho, Yoonjae;Jang, Jiwon
    • BMB Reports
    • /
    • v.54 no.10
    • /
    • pp.505-515
    • /
    • 2021
  • Human pluripotent stem cells (hPSCs) include human embryonic stem cells (hESCs) derived from blastocysts and human induced pluripotent stem cells (hiPSCs) generated from somatic cell reprogramming. Due to their self-renewal ability and pluripotent differentiation potential, hPSCs serve as an excellent experimental platform for human development, disease modeling, drug screening, and cell therapy. Traditionally, hPSCs were considered to form a homogenous population. However, recent advances in single cell technologies revealed a high degree of variability between individual cells within a hPSC population. Different types of heterogeneity can arise by genetic and epigenetic abnormalities associated with long-term in vitro culture and somatic cell reprogramming. These variations initially appear in a rare population of cells. However, some cancer-related variations can confer growth advantages to the affected cells and alter cellular phenotypes, which raises significant concerns in hPSC applications. In contrast, other types of heterogeneity are related to intrinsic features of hPSCs such as asynchronous cell cycle and spatial asymmetry in cell adhesion. A growing body of evidence suggests that hPSCs exploit the intrinsic heterogeneity to produce multiple lineages during differentiation. This idea offers a new concept of pluripotency with single cell heterogeneity as an integral element. Collectively, single cell heterogeneity is Janus-faced in hPSC function and application. Harmful heterogeneity has to be minimized by improving culture conditions and screening methods. However, other heterogeneity that is integral for pluripotency can be utilized to control hPSC proliferation and differentiation.

Effects of Information Processing Types and Product Ownership on Usage Intention

  • CHOI, Nak-Hwan
    • The Journal of Industrial Distribution & Business
    • /
    • v.12 no.5
    • /
    • pp.47-58
    • /
    • 2021
  • Purpose - Current research aimed at exploring the effect differences between the two types of processing product information such as the imagining and the considering on psychological product ownership which could influence the intent to purchase or use the product, and focused on identifying the interaction effects of activated memory information type and advertising information type on each of the information processing types. Research design, data, and methodology - This study divided the information processing types into imagining and considering, and the consumer's memories were divided into autobiographical or episodic and semantic memory. The advertising information was approached in each of event information being together with the product and product feature information. At empirical study, 2(two types of memory activation: episodic and semantic memory activation) ∗ 2(two types of advertising information: event-focused and product feature-focused advertising information) between-subjects design was used to make four types of questionnaire according to the type of experimental groups. Through the survey platform, 'questionnaire stars' of 'WeChat' in China, 219 questionnaire data were collected for empirical study. The structural equation model in AMOS 26 and Anova were used to verify hypotheses. Results - First, the ownership affected the usage intent positively. Second, the imagining did not affect the psychological ownership but did directly affect the usage intention, and the considering affected the ownership positively. Third, the episodic memory activation positively influenced the imagining and negatively affected the considering, whereas the semantic memory activation positively influenced the considering and negatively affected the imagining. Fourth, event-advertising information increased the effects of the activated episodic memory on the imagining, and feature-advertising information increased the effects of the activated semantic memory on the considering. Conclusions - marketers should develop and advertise their product-related event message to trigger the imaging that directly increase the intent to purchase or use their product, when consumers are under the activation of their episodic memory. And marketers should advertise their product feature-related message to trigger the considering that could induce consumers' ownership for their product to increase the intent to purchase or use their product, when they are under the activation of their semantic memory.

The Research of Interworking System for Closed Plant Factories (식물공장을 위한 인터워킹 서비스 시스템에 대한 연구)

  • Lee, Myeongbae;Baek, Miran;Park, Jangwoo;Cho, Yongyun;Shin, Changsun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.91-97
    • /
    • 2018
  • The plant factory represents one of the future agricultural systems into which ubiquitous information technology (U-IT) is incorporated, including sensor networking, and helps minimize the influence of external experimental factors that constrain the use of existing greenhouse cultivation techniques. A plant factory's automated cultivation system does not merely provide convenience for crop cultivation, but also expandability as a platform that helps build a knowledge database based on its acquired information and develop education and other application services using the database. For the expansion of plant factory services, this study designed a plant factory interworking service (PFIS) which allows plant factories to share crop growth-related information efficiently among them and performed a test on the service and its implementation.

Responses of Soil Bacterial and Fungal Communities to Organic and Conventional Farming Systems in East China

  • Zhang, Hanlin;Zheng, Xianqing;Bai, Naling;Li, Shuangxi;Zhang, Juanqin;Lv, Weiguang
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.3
    • /
    • pp.441-453
    • /
    • 2019
  • Organic farming is considered an effective form of sustainable agricultural management. However, understanding of soil microbial diversity and composition under long-term organic and conventional farming is still limited and controversial. In this study, the Illumina MiSeq platform was applied to investigate the responses of soil bacterial and fungal diversity and compositions to organic farming (OF) and improved conventional farming (CF, applied straw retention) in the rice-wheat rotation system. The results highlighted that the alpha diversity of microbial communities did not differ significantly, except for higher bacterial diversity under OF. However, there were significant differences in the compositions of the soil bacterial and fungal communities between organic and conventional farming. Under our experimental conditions, through the ecological functional analysis of significant different or unique bacterial and fungal taxonomic members at the phyla and genus level, OF enhanced nitrogen, sulfur, phosphorus and carbon dynamic cycling in soil with the presence of Nodosilinea, Nitrospira, LCP-6, HB118, Lyngbya, GOUTA19, Mesorhizobium, Sandaracinobacter, Syntrophobacter and Sphingosinicella, and has the potential to strengthen soil metabolic ability with Novosphingobium. On the other hand, CF increased the intensity of nitrogen cycling with Ardenscatena, KD1-23, Iamia, Nitrosovibrio and Devosia, but enriched several pathogen fungal members, including Coniochaeta, Corallomycetella, Cyclaneusma, Cystostereum, Fistulina, Curvularia and Dissoconium.

Development of an IoT-Based Dizziness Detection System for VR Applications (VR 애플리케이션을 위한 사물인터넷 기반 어지럼증 검출 시스템 개발)

  • Ko, Euni;Kim, Youngcheon;Park, Hyelee;Jung, Wonseok;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.423-425
    • /
    • 2019
  • Users may experience a sub-type of motion sickness, called cybersickness, when interacting with virtual reality (VR) applications in the state of wearing head mounted display (HMD) devices. Although the root cause of cybersickness is still unclear, it is believed to result from a sensory mismatch between visual and vestibular systems. However, there is a lack of studies developing data collection and analysis systems to measure cybersickness. In this paper, therefore, a system is designed that collects electroencephalography (EEG) and physiological data from a user wearing a VR HMD device through an internet of things (IoT) platform and decides whether a user experiences a symptom of cybersickness, namely dizziness, or not by using a decision threshold. Experimental results showed that the proposed system achieved about 92% accuracy of a dizziness detection when considering 14 participants.

  • PDF

Information-Based Urban Regeneration for Smart Education Community (스마트 교육 커뮤니티 정보기반 도시재생)

  • Kimm, Woo-Young;Seo, Boong-Kyo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.12
    • /
    • pp.13-20
    • /
    • 2018
  • This research is to analyze the public cases of information facilities in terms of central circulations in multi level volumes such as atrium or court which provide visual intervention between different spaces and physical connections such as bridges. Hunt Library design balances the understood pre-existing needs with the University's emerging needs to create a forward-thinking learning environment. While clearly a contemporary structure within a traditional context of the NCSU campus, the Hunt Library provides a positive platform for influencing its surroundings. Both technical and programmatic innovations are celebrated as part of the learning experience and provide a versatile and stimulating environment for students. Public library as open spaces connecting to an interactive social domain over communities can provide variety of learning environments, or technology based labs. There are many cases of the public information spaces with dynamic networks where participants can play their roles in physical space as well as in the intellectual stimulation. In the research, new public projects provide typologies of information spaces with user oriented media. The research is to address a creative transition between the reading space and the experimental links of the integration of state-of-the-art technology is highly visible in the building's design. The user-friendly browsing system that replaces the traditional browsing with the virtual shelves classified and archived by their form, is to reduce the storage space of the public library and it is to allow more space for collaborative learning. In addition to the intelligent robot of information storages, innovative features is the large-scale visualization space that supports team experiments to carry out collaborative online works and therefore the public library's various programs is to provide visitors with more efficient participatory environment.

Robust Wireless Sensor and Actuator Network for Critical Control System (크리티컬한 제어 시스템용 고강건 무선 센서 액추에이터 네트워크)

  • Park, Pangun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1477-1483
    • /
    • 2020
  • The stability guarantee of wireless network based control systems is still challenging due to the lossy links and node failures. This paper proposes a hierarchical cluster-based network protocol called robust wireless sensor and actuator network (R-WSAN) by combining time, channel, and space resource diversity. R-WSAN includes a scheduling algorithm to support the network resource allocation and a control task sharing scheme to maintain the control stability of multiple plants. R-WSAN was implemented on a real test-bed using Zolertia RE-Mote embedded hardware platform running the Contiki-NG operating system. Our experimental results demonstrate that R-WSAN provides highly reliable and robust performance against lossy links and node failures. Furthermore, the proposed scheduling algorithm and the task sharing scheme meet the stability requirement of control systems, even if the controller fails to support the control task.

Development of Ice Load Generation Module to Evaluate Station-Keeping Performance for Arctic Floating Structures in Time Domain

  • Kang, Hyun Hwa;Lee, Dae-Soo;Lim, Ji-Su;Lee, Seung Jae;Jang, Jinho;Jung, Kwang Hyo;Lee, Jaeyong
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.6
    • /
    • pp.394-405
    • /
    • 2020
  • To assess the station-keeping performance of floating structures in the Arctic region, the ice load should be considered along with other environmental loads induced by waves, wind, and currents. However, present methods for performance evaluation in the time domain are not effective in terms of time and cost. An ice load generation module is proposed based on the experimental data measured at the KRISO ice model basin. The developed module was applied to a time domain simulation. Using the results of a captive model test conducted in multiple directions, the statistical characteristics of ice loads were analyzed and processed so that an ice load corresponding to an arbitrary angle of the structure could be generated. The developed module is connected to commercial dynamic analysis software (OrcaFlex) as an external force input. Station-keeping simulation in the time domain was conducted for the same floating structure used in the model test. The mooring system was modeled and included to reflect the designed operation scenario. Simulation results show the effectiveness of the proposed ice generation module and its application to station-keeping performance evaluation. Considering the generated ice load, the designed structure can maintain a heading angle relative to ice up to 4°. Station-keeping performance is enhanced as the heading angle conforms to the drift direction. It is expected that the developed module will be used as a platform to verify station-keeping algorithms for Arctic floating structures with a dynamic positioning system.

Can Dining Alone Lead to Healthier Menu Item Decisions than Dining with Others? The Roles of Consumption Orientation and Menu Nutrition Information (혼밥이 건강한 메뉴 선택에 미치는 영향: 소비 목적 지향과 메뉴 영양 정보 표시의 역할)

  • Her, EunSol;Behnke, Carl;Almanza, Barbara
    • Korean Journal of Community Nutrition
    • /
    • v.26 no.3
    • /
    • pp.155-166
    • /
    • 2021
  • Objectives: Driven by a growth of single-person households and individualized lifestyles, solo dining in restaurants is an increasingly recognizable trend. However, a research gap exists in the comparison of solo and group diners' menu-decision making processes. Based on the self-control dilemma and the temporal construal theory as a theoretical framework, this study compared the ordering intentions of solo vs. group diners with healthy vs. indulgent (less healthy) entrées. The mediating role of consumption orientation and the moderating role of amount of menu nutrition information were further explored to understand the mechanism and a boundary condition. Methods: A scenario-based online survey was developed using a 2 (dining social context: solo vs. with others) × 3 (amount of menu nutrition information: no nutrition information vs. calories vs. calories/fat/sodium), between-subjects, experimental design. Consumers' level of nutrition involvement was controlled. A nationwide survey data (n = 224) were collected from a crowdsourcing platform in the U.S. Data were analyzed using multivariate analysis of covariance, independent t-test, univariate analysis of covariance, and moderated mediation analyses. Results: Findings reveal that solo (vs. group) diners have less (vs. more) intentions to order indulgent menu items due to a more utilitarian (vs. more hedonic) consumption orientation in restaurant dining. Findings also show that solo (vs. group) diners have more (vs. less) intentions to order healthy menu items when the restaurant menu presented nutrition information including calories, fat, and sodium. Conclusions: The findings contribute to the literature of foodservice management, healthy eating, and consumer behavior by revealing a mechanism and an external stimuli of solo vs. group diners' healthy menu-decision making process in restaurants. Furthermore, the findings provide restauranteurs and health professionals with insights into the positive and negative impacts of menu nutrition labelling on consumers' menu-decisions.