• Title/Summary/Keyword: Experimental module

Search Result 1,184, Processing Time 0.106 seconds

Development and Application of the Sea Wave Experimental Module for the Gifted Students in High School Earth Science (고등학교 과학영재를 위한 지구과학 영역 해파 실험모듈 개발 및 활용)

  • Lee, Heui-Taek;Shim, Kew-Cheol;Kim, Yeo-Sang
    • Journal of Gifted/Talented Education
    • /
    • v.18 no.1
    • /
    • pp.139-165
    • /
    • 2008
  • This paper is focused on the development of sea wave experimental module for the science gifted students and the potential of its application in high school earth science. Sea wave experimental module for the gifted was characteristics by five phases: Engagement, Exploration, Explanation, Elaboration, and Expansion. Subjects were 16 gifted students, who were 10th graders and have been taught in the adjacent Education Institute for the gifted of Education Districts, Daejeon Metropolitan Office of Education The changes of inquiry ability and knowledge achievement were analyzed according to analysis of experimental report and pre-test and post-test. Experimental module for the gifted was very effective on inquiry skills as follows: control of variables, experimental designing, and selecting tools of experimental process. And also it was positively effective on achievement. The result of this study suggested that experimental module for the science gifted should be very meaningfully to improve scientific ability of them, and the development and application of experimental module for the science gifted be needed for them.

An Experimental Study of a Water Type Unglazed PV/Thermal Combined Collector Module (액체식 Unglazed PVT 복합모듈의 성능실험연구)

  • Kim, Jin-Hee;Kang, Jun-Gu;Kim, Jun-Tae
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2008.11a
    • /
    • pp.184-189
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal(PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously In general, two types of PVT can be distinguished: glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type unglazed PVT combined module, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.05% average and its PV efficiency was about 11.85% average, both depending on solar radiation, inlet water temperature and ambient temperature.

  • PDF

A Experimental Performance of PVT Module With Fully Wetted Absorber (전면 액체식 흡열판을 적용한 PVT 모듈의 실험성능)

  • Chun, Jin-Aha;Kim, Jin-Hee;Kim, Jun-Tae;Cho, In-Soo;Nam, Seung-Baeg
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.121-126
    • /
    • 2011
  • The heat from PV modules should be removed for better electrical performance, and can be converted into useful thermal energy. A photovoltaic-thermal(PVT) module is a combination of PV module with a solar thermal collector which forms one device that converts solar radiation into electricity and heat simultaneously. In general, there are two different types of PVT module: glazed PVT module and unglazed PVT module. On the other hand, two types of the PVT module can be distinguished according to absorber on PV module rear side: the sheet-and-tube absorber PVT module and the fully wetted absorber PVT module. In this paper, the experimental performance of water type unglazed PVT with fully wetted absorber was analyzed. The electrical and thermal performance of the unglazed PVT were measured in outdoor conditions, and the results were analyzed. The experimental results showed that the thermal efficiency of the PVT module was 42% average, and its electrical efficiencies were 15.2% and 14.2% average, respectively, for the mean fluid temperature of $10-20^{\circ}C$ and $21-30^{\circ}C$. Thermal efficiency depends on solar radiation, mean fluid temperature and ambient temperature. The PVT module temperature is related to the cooling effect of the PV module by the fluid of the absorber. The results proved that the electrical efficiency was higher when the mean fluid temperature was lower.

  • PDF

The Dynamic Characteristic Test of Oil pump Integrated Balance Shaft Module (오일펌프 내장형 밸런스 샤프트 모듈의 동특성 시험)

  • Seong, Eun-Je;Kang, Dae-Gyu;Jeong, Chan-Yong;Han, Chang-Soo;Kim, Myung-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.403-408
    • /
    • 2007
  • According as diesel automobile are produced, reduce noise and vibration that is occurred by characteristic of diesel engine, and need engine room layout optimization and research for light weight of parts. Balance Shaft Module is module parts for vehicles engine to improve performance and efficiency of engine and reduce noise and vibration. These days, an oil pump integrated balance shaft module and an oil sump integrated balance shaft module is on the rising for optimizing of engine room. In this study, produced prototype of oil pump integrated type balance shaft module, and achieved dynamic characteristic test about experimental modal analysis and noise/vibration of balance shaft module.

  • PDF

Effects of an Educational Method using the OSCE Module Development Activities for Nursing Students on the Clinical Competence of Medication (간호학생의 구조화된 객관적 임상수행펑가 (OSCE) 모듈 개발 활동이 투약간호술에 미치는 효과)

  • Kim, Hyun-Sook;Eom, Mi Ran
    • Perspectives in Nursing Science
    • /
    • v.9 no.2
    • /
    • pp.136-145
    • /
    • 2012
  • Purpose: The purpose of this study was to verify the educational effectiveness of the Objective structured clinical examination (OSCE) module development activities on nursing students in the areas of performance skill, knowledge, self-directed learning readiness, and problem solving ability for medication skill. Methods: This study was a nonequivalent control group non-synchronized post-test design. The subjects (N=47), who agreed to participate in this study, were assigned to either the experimental (n=24) or control group (n=23). The experimental group was trained with OSCE module development activities for four days. The control group was trained with a traditional demonstration and practice class for the same amount of time as the experimental group. Medication performance skill and knowledge tests and surveys were done to measure self-directed learning readiness, and learning satisfaction after the experimental treatments. Results: The experimental group which participated in the OSCE module development activities showed significantly higher performance skill, self-directed learning readiness, and problem solving ability for skin test and insulin medication than that of the control group of traditional education. Conclusion: It is recommended to use the OSCE module development activities for nursing students in nursing education-learning in order to improve nursing skills.

  • PDF

Development and Application of the Photosynthesis Experimental Module Based on Scientist's Inquiry Processes (과학자의 탐구 과정을 재구성한 광합성 실험 모듈의 개발과 적용)

  • Kim, Ho-Gi;Kim, Yeon-Ju;Kim, Sung-Ha
    • Journal of Science Education
    • /
    • v.35 no.2
    • /
    • pp.204-220
    • /
    • 2011
  • This study was intended to develop an experimental module based on inquiry processes conducted by photosynthesis scientists. It was aimed to enhance scientific inquiry ability of the middle school students by applying the developed module. Developed module included some experiments conducted by earlier photosynthesis scientists such as Helmont, Woodward, Priestly, Hales and Ingen-Hausz. Inquiry process was involved in the developed module for instructing the inquiry methods. Rapid-cycling Brassica rapa known as a Fast Plant was used for the experimental material. Developed module was applied to the experimental group consisting 27 eighth grader, while experiments suggested in the science textbook was applied to the control group consisting 30 eighth grader. Developed module was more effective in improving students' scientific inquiry ability, especially measuring, forecasting and hypothesizing ability as its subordinate elements. When the result of post-test was compared to one of pre-test in the experimental group, their observing, forecasting, and generalization ability were improved. Experimental group showed that students' conception in photosynthesis and conceptual development related with the role of plants in the ecosystem and plant's food and movement of the water and nutrients were also improved. Before application, students in the experimental group did not have enough understanding of the abstract concept such as the existence or the role of the materials like $CO_2$ or $O_2$ or the energy accumulation. Developed module could help students to achieve the comprehensive concept regarding the role of plants as producers of organic matter and oxygen and to enhance their scientific inquiry ability and concepts regarding photosynthesis.

  • PDF

A Study on the Performance of Thermoelectric Module and Thermoelectric Cooling System (열전소자 및 열전냉각장치의 성능에 관한 연구)

  • 유성연;홍정표;심우섭
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.1
    • /
    • pp.62-69
    • /
    • 2004
  • Thermoelectric module is a device that can produce cooling in a direct manner using the electrical energy. The purpose of this study is to investigate the performance of thermoelectric module and cooling system equipped with the thermoelectric module. The performance of a thermoelectric module is estimated using two methods; theoretical analysis based on one-dimensional energy equations and experimental tests using heat source, heat sink and brass conduction extenders. For the thermoelectric cooling system, the temperatures in the chamber are recorded and then compared with those of lumped system analysis. The results show that the cooling capacity and COP of the thermoelectric module increases as the temperature difference between hot and cold surface decreases, and there is particular current at which cooling capacity reaches its maximum value. The experimental results for the thermoelectric cooling system are similar to those of lumped system analysis.

Numerical and Experimental Analyses of a Hot-Wire Gas Flowmeter

  • Kim, Byoung-Chul;Joung, Ok-Jin;Kim, Young-Han
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1201-1206
    • /
    • 2003
  • A measurement device for gas flow rate using hot-wire module is developed for the utilization in low-accuracy industrial applications. The module has three wires of measuring and heating, and a bridge circuit is installed to detect electric current through the wire in the module. An amplification of the signal and conversion to digital output are conducted for the online measurement with a personal computer. In addition, temperature distribution in the module is numerically analyzed to examine the measured outcome from the module experiment. The flow rate of air and carbon dioxide gas is separately measured for the performance examination of the device. The experimental relation of measurement and flow agrees with the prediction from the numerical analysis. The outcome of the performance test indicates that the accuracy and reproducibility of the module is satisfactory for the purpose of industrial applications.

  • PDF

An experimental study on cooling characteristic of a thermoelectric module (열전모듈의 냉각특성에 관한 실험적 연구)

  • Hwang, Jun;Kang, Byung Ha
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.4
    • /
    • pp.341-347
    • /
    • 2004
  • An experimental study has been carried out on cooling perfonnance of a thennoelectric module. This problem is of particular interest in the design of the refrigeration systems using thermoelectric module, such as cosmetic refrigerator, wine cellar and air cooler. The effect of the input voltage and the hot side temperature on the cooling performance is studied in detail. The $\Delta$T, temperature difference between cold side and hot side surface of thermoelectric module, is described in terms of the input voltage and the hot side temperature. It is found that the cooling capacity can be improved by increasing the input voltage and by reducing the heat from the hot side of the thermoelectric module. However, COP is decreased with an increase in the input voltage, since power consumption is also increased. Thus, optimum input voltage can be selected based on cooling capacity and COP.

An Experimental Study of a Water Type Glazed PV/Thermal Combined Collector Module (액체식 Glazed PVT 복합모듈의 성능실험 연구)

  • Kim, Jin-Hee;Kim, Jun-Tae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.4
    • /
    • pp.260-265
    • /
    • 2008
  • The excess heat that is generated from PV modules can be removed and converted into useful thermal energy. A photovoltaic/thermal (PVT) module is a combination of photovoltaic module with a solar thermal collector, forming one device that converts solar radiation into electricity and heat simultaneously. In general, two types of PVT can be distinguished : glass-covered PVT module, which produces high-temperature heat but has a slightly lower electrical yield, and uncovered PVT module, which produces relatively low-temperature heat but has a somewhat higher electrical performance. In this paper, the experimental performance of water type PVT combined module, glass-covered, analyzed. The electrical and thermal performance of the module were measured in outdoor conditions, and the results are analyzed. The results showed that the thermal efficiency of the PVT module was 27.6% average and its PV efficiency was about 10.0% average, both depending on solar radiation, inlet water temperature and ambient temperature.