• Title/Summary/Keyword: Experimental compensation

Search Result 1,013, Processing Time 0.026 seconds

Improvement of Speed Control Performance using Acceleration Feedforward and Incrtia Identification for the Induction Motor (관성능률 추정과 가속도 전향보상을 이용한 유도전동기의 속도제어 성능향상)

  • 이재옥;김상훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.1
    • /
    • pp.90-97
    • /
    • 2001
  • In this paper, a novel speed control strategy using an acceleration feedforward compensation by the estimation of the system inertia is proposed. With the proposed method, the enhanced speed control performance can be achieved and the speed response against the disturbance torque can be improved for the vector-controled induction motor drive systems in which the bandwidth of the speed controller cannot be made large enough. The simulation and experimental results for induction motor drive systems confirm the validity of the proposed strategy.

  • PDF

Grid-friendly Control Strategy with Dual Primary-Side Series-Connected Winding Transformers

  • Shang, Jing;Nian, Xiaohong;Chen, Tao;Ma, Zhenyu
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.960-969
    • /
    • 2016
  • High-power three-level voltage-source converters are widely utilized in high-performance AC drive systems. In several ultra-power instances, the harmonics on the grid side should be reduced through multiple rectifications. A combined harmonic elimination method that includes a dual primary-side series-connected winding transformer and selective harmonic elimination pulse-width modulation is proposed to eliminate low-order current harmonics on the primary and secondary sides of transformers. Through an analysis of the harmonic influence caused by dead time and DC magnetic bias, a synthetic compensation control strategy is presented to minimize the grid-side harmonics in the dual primary side series-connected winding transformer application. Both simulation and experimental results demonstrate that the proposed control strategy can significantly reduce the converter input current harmonics and eliminates the DC magnetic bias in the transformer.

Novel Control Strategy for a UPQC under Distorted Source and Nonlinear Load Conditions

  • Trinh, Quoc-Nam;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.13 no.1
    • /
    • pp.161-169
    • /
    • 2013
  • This paper proposes a novel control strategy for a unified power quality conditioner (UPQC) including a series and a shunt active power filter (APF) to compensate the harmonics in both the distorted supply voltage and the nonlinear load current. In the series APF control scheme, a proportional-integral (PI) controller and a resonant controller tuned at six multiples of the fundamental frequency of the network ($6{\omega}_s$) are performed to compensate the harmonics in the distorted source. Meanwhile, a PI controller and three resonant controllers tuned at $6n{\omega}_s$(n=1, 2, 3) are designed in the shunt APF control scheme to mitigate the harmonic currents produced by nonlinear loads. The performance of the proposed UPQC is significantly improved when compared to that of the conventional control strategy thanks to the effective design of the resonant controllers. The feasibility of the proposed UPQC control scheme is validated through simulation and experimental results.

Current Compensation Scheme to Reduce Torque Ripples of Delta-connected Low-inductance BLDC Motor Drives (델타 결선형 저인덕턴스 BLDC 전동기의 토크 리플 저감을 위한 전류 보상 기법)

  • Park, Do-Hyeon;Lee, Dong-Choon;Lee, Hyong-Gun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.449-456
    • /
    • 2017
  • This study proposes a method for compensating for the commutation torque ripple of delta-connected brushless DC motors with low inductance based on a current predictions. At the commutation instant, a phase current at the next sampling period is predicted and compared with the reference phase current to determine whether torque ripples will occur or not. If the predicted current cannot reach the reference phase current, the reference current is modified and the relevant voltage reference is produced to reduce the torque ripple. The validity of the proposed method has been verified by simulation and experimental results. The commutation torque ripple has been decreased by 17.7% at 1,000 rpm and 80% load conditions.

A Calculation of C-V Characteristics for ${Hg}_{1-x}{Cd}_{x}$Te MIS Device (${Hg}_{1-x}{Cd}_{x}$Te MIS 소자의 C-V 특성 계산)

  • 이상돈;김봉흡;강형부
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.420-431
    • /
    • 1994
  • The HgCdTe material, which is II-VI compound semiconductor, is important materials for the fabrication of the infrared detectros. To suggest the model of accurate MIS C-V calculation for narrow band gap semiconductors such as HgCdTe, non-parabolicity from k.p theory and degeneracy effect are considered. And partially ionized effect and compensation effect which are material's properties are also considerd. Especially, degenerated material C-V characteristics from Fermi-Dirac statistics and exact charge theory are presented to get more accurate analysis of the experimental results. Also the comparison with calculation results between the general MIS theory from Boltzmann appoximation method and this model which is considered the narrow band gap semiconductor properties, show that this model is more useful theory to determination of accurate low and high frequency C-V characteristics.

  • PDF

A study on the ramp tracking servo controller using nonlinear friction compensator (비선헝 마찰 보상기를 이용한 램프추종 서보제어기에 관한 연구)

  • Choi, Seung-Hwan;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.426-428
    • /
    • 1998
  • In this paper, a ramp tracking controller design method is proposed for the systems with nonlinear frictions. The objective is to design a controller which is capable of tracking a ramp reference input without steady state error. The controller is composed of a linear controller, integrators for error compensation, and a friction compensator. The compensator estimates the parameters of friction model. The friction parameters are estimated using two different method. Simulation and experimental results show that the proposed method is effective.

  • PDF

Experimental Studies of Vision Based Position Tracking Control of Mobile Robot Using Neural Network (신경회로망을 이용한 비전 기반 이동 로봇의 위치제어에 대한 실험적 연구)

  • Jung, Seul;Jang, Pyung-Soo;Won, Moon-Chul;Hong, Sub
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.7
    • /
    • pp.515-526
    • /
    • 2003
  • Tutorial contents of kinematics and dynamics of a wheeled drive mobile robot are presented. Based on the dynamic model, simulation studies of position tracking of a mobile robot are performed. The control structure of several position control algorithms using visual feedback are proposed and their performances are compared. In order to compensate for uncertainties from unknown dynamics and ignored dynamic effects such as slip conditions, neural network based position control schemes are proposed. Experiments are conducted and the results show the performance of the vision based neural network control scheme fumed out to be the best among several proposed schemes.

A Design of NAC(Natural Admittance Controller) for Coulomb Friction Compensation

  • Sungmin Jang;Kim, Seungwoo
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.596-599
    • /
    • 2000
  • A natural admittance control system design is presented for a particular type of interaction controller that achieve high-performance and guarantees stability. The admittance control Significantly improves performance when Coulomb friction is present in the one link robot system. The technique requires a careful choice of the target impedance. Experimental performance results are presented for a two-mass system with internal Coulomb friction. Results demonstrate that the admittance control law is successful in rejecting internal Coulomb friction force disturbances. The controller was designed and implemented on our system that we set up one link robot system and hardware configuration system, and performance results are presented.

  • PDF

A DC~7GHz Ultrabroad-Band GaAs MESFET (DC~7GHz 초광대역 GaAs MESFET 증폭기)

  • 윤영철;장익수
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.34-42
    • /
    • 1993
  • An analytic approach to wide-band amplification using simplified equivalent MESFET modeling has enabled an ultrabroad-band flat-gain amplifier from DC to microwave. The developed lossy-match ultrabroad-band amplifier operates as a RC coupled circuit in the low-frequency range and lossless impedance matching circuit in the microwave frequency range with gain compensation circuits. The reduced gain caused by external resistors is compensated using 2-stage cascade amplification, and the gain of designed unit is 12.5.+-.1dB from the vicinity of DC to 7GAz. The experimental gain characteristics are good agreement with computer simulated results. The input and output VSWRs are measured under 2:1 over the operating frequency range, and the gain goes down over 15dBrange with various gate bias voltages.

  • PDF

A low-power multiplying D/A converter design for 10-bit CMOS algorithmic A/D converters (10비트 CMOS algorithmic A/D 변환기를 위한 저전력 MDAC 회로설계)

  • 이제엽;이승훈
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.12
    • /
    • pp.20-27
    • /
    • 1997
  • In this paper, a multiplying digital-to-analog converter (MDAC) circuit for low-power high-resolution CMOS algorithmic A/D converters (ADC's) is proposed. The proposed MDAC is designed to operte properly at a supply at a supply voltge between 3 V and 5 V and employs an analog0domain power reduction technique based on a bias switching circuit so that the total power consumption can be optimized. As metal-to-metal capacitors are implemented as frequency compensation capacitors, opamps' performance can be varied by imperfect process control. The MDAC minimizes the effects by the circuit performance variations with on-chip tuning circuits. The proposed low-power MDAC is implementd as a sub-block of a 10-bit 200kHz algorithmic ADC using a 0.6 um single-poly double-metal n-well CMOS technology. With the power-reduction technique enabled, the power consumption of the experimental ADC is reduced from 11mW to 7mW at a 3.3V supply voltage and the power reduction ratio of 36% is achieved.

  • PDF