• 제목/요약/키워드: Experimental and Calculation Analysis Method

검색결과 420건 처리시간 0.022초

내부손실계수 측정을 위한 실험 방법 (Experimental Methods for the Measurement of Damping Loss Factors)

  • 김관주;최승권
    • 소음진동
    • /
    • 제9권6호
    • /
    • pp.1187-1192
    • /
    • 1999
  • The purpose of this study is to determine the most appropriate experimental method of the measurement of "damping loss factors" (DLF) for the statistical energy analysis(SEA) calculation. The successful prediction of vibration levels from the structure is critically dependent on the accurate estimation of DLF's not only in conventional vibration analysis but especially in SEA. Unforunately, calculation of accurate DLF is not an easy matter. So experimental methods are made use of for the DLF values. Three kinds of experimental methods for estimating DLF, i.e. decay rate method, half-power bandwidth method and power balance method, are presented and tests are carried out for the plate and the cylindrical shell examples. Pro and con of each methods is reviewed. Finally, calculated DLF values are used for vibration level estimation using commercial SEA software and compared with measured vibration data.tion data.

  • PDF

Research on flexural bearing capacity of cold-formed thin-walled steel and reinforced concrete sandwich composite slabs

  • Qiao, Wentao;Huang, Zhiyuan;Yan, Xiaoshuo;Wang, Dong;Meng, Lijun
    • Steel and Composite Structures
    • /
    • 제45권2호
    • /
    • pp.219-230
    • /
    • 2022
  • The aim of this paper is to study the mechanical behaviors of the cold-formed thin-walled steel and reinforced concrete sandwich composite slab (CTS&RC-SCS) under vertical loads and to develop the calculation methods of its flexural bearing capacity and section stiffness. Two CTS&RC-SCS specimens were designed and manufactured to carry out the static loading test, and meanwhile, the numerical simulation analyses based on finite element method were implemented. The comparison between experimental results and numerical analysis results shows that the CTS&RC-SCS has good flexural capacity and ductility, and the accuracy and rationality of the numerical simulation analysis are verified. Further, the variable parameter analysis results indicate that neither increasing the concrete strength grade nor increasing the thickness of C-sections can significantly improve the flexural capacity of CTS&RC-SCS. With the increase of the ratio of longitudinal bars and the thickness of the composite slab, the flexural capacity of CTS&RC-SCS will be significantly increased. On the basis of experimental research and numerical analysis above, the calculation formula of the flexural capacity of CTS&RC-SCS was deduced according to the plastic section design theory, and section stiffness calculation formula was proposed according to the theory of transformed section. In terms of the ultimate flexural capacity and mid-span deflection, the calculated values based on the formulas and the experimental values are in good agreement.

Calculation of Welding Deformations by Simplified Thermal Elasto-plastic Analysis

  • Seo Sung Il
    • Journal of Ship and Ocean Technology
    • /
    • 제8권3호
    • /
    • pp.40-49
    • /
    • 2004
  • Welding deformations injure the beauty of appearance of a structure, decrease its buckling strength and prevent increase of productivity. Welding deformations of real structures are complicated and the accurate prediction of welding deformations has been a difficult problem. This study proposes a method to predict the welding deformations of large structures accurately and practically based on the simplified thermal elasto-plastic analysis method. The proposed method combines the inherent strain theory with the numerical or theoretical analysis method and the experimental results. The weld joint is assumed to be divided into 3 regions such as inherent strain region, material softening region and base metal region. Characteristic material properties are used in structural modeling and analysis for reasonable simplification. Calculated results by this method show good agreement with the experimental results. It was proven that this method gives an accurate and efficient solution for the problem of welding deformation calculation of large structures.

Space Radiation Shielding Calculation by Approximate Model for LEO Satellites

  • Shin Myung-Won;Kim Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제36권1호
    • /
    • pp.1-11
    • /
    • 2004
  • Two approximate methods for a cosmic radiation shielding calculation in low earth orbits were developed and assessed. Those are a sectoring method and a chord-length distribution method. In order to simulate a change in cosmic radiation environments along the satellite mission trajectory, IGRF model and AP(E)-8 model were used. When the approximate methods were applied, the geometrical model of satellite structure was approximated as one-dimensional slabs, and a pre-calculated dose-depth conversion function was introduced to simplify the dose calculation process. Verification was performed with mission data of KITSAT-1 and the calculated results were also compared with detailed 3-dimensional calculation results using Monte Carlo calculation. Dose results from the approximate methods were conservatively higher than Monte Carlo results, but were lower than experimental data in total dose rate. Differences between calculation and experimental data seem to come from the AP-8 model, for which it is reported that fluxes of proton are underestimated. We confirmed that the developed approximate method can be applied to commercial satellite shielding calculations. It is also found that commercial products of semi-conductors can be damaged due to total ionizing dose under LEO radiation environment. An intensive shielding analysis should be taken into account when commercial devices are used.

전기 업셋팅 가공시의 열탄소성 해석에 관한 연구 (A Study on the Thermo-elasto-plastic Analysis of Upset Forming)

  • 왕지석;박태인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.69-76
    • /
    • 1994
  • Thermal elasto-plastic analysis of axi-symmetric body by the finite element method is presented in this paper for analyzing the process of upset forming of circular section extruded bar. The example of calculation for upset forming of Nimonic extruded bar is also presented. It is shown that remeshing of quadrilateral finite element is necessary because the very highly distorted element by plastic deformation disturbs the calculation. Calculated values for nodal points in new mesh are obtained from nodal points of old mesh by linear interpolation method. The experimental results are compared with calculated values. The appearance of upsetupset forming obtained by experimental method is very similar to that obtained by calculations. So, it is proved that the thermal elasto-plastic analysis of axi-symmetric body by the finite element method is very useful for finding the optimum upsetting condition.

  • PDF

주파수응답함수의 변화를 이용한 기계적 결합부의 동특성 파라미터 해석 (Dynamic Analysis of Mechanical Joint Parameters Using the Variation of Frequency Response Function)

  • 강성구;지태한;유원희;박영필
    • 소음진동
    • /
    • 제4권2호
    • /
    • pp.155-161
    • /
    • 1994
  • The dynamic behavior of a complex mechanical structure can be identified by dividing the structure into a series of smaller structure, called sub- structure and by studying the dynamic characteristics of these components. Generally, the dynamic characteristics of mechanical structure are strongly affected by the properties of joint parameters. In this paper, to identify the dynamic characteristics of mechanical structure, and experimental identification method in which directrly measured frequency response function(FRF) is used is considered. The method does not use the procedure of complex matrix calculation but use that of real matrix calculation. To confirm this method, computer simulation is performed by using frequency response function mixed with noise, and the experimental study is performed about the simple structure. The dynamic characteristics of joint parameters and identified more accurately than in using the prcedure of complex matrix calculation.

  • PDF

Deflection calculation method on GFRP-concrete-steel composite beam

  • Tong, Zhaojie;Song, Xiaodong;Huang, Qiao
    • Steel and Composite Structures
    • /
    • 제26권5호
    • /
    • pp.595-606
    • /
    • 2018
  • A calculation method was presented to calculate the deflection of GFRP-concrete-steel beams with full or partial shear connections. First, the sectional analysis method was improved by considering concrete nonlinearity and shear connection stiffness variation along the beam direction. Then the equivalent slip strain was used to take into consideration of variable cross-sections. Experiments and nonlinear finite element analysis were performed to validate the calculation method. The experimental results showed the deflection of composite beams could be accurately predicted by using the theoretical model or the finite element simulation. Furthermore, more finite element models were established to verify the accuracy of the theoretical model, which included different GFRP plates and different numbers of shear connectors. The theoretical results agreed well with the numerical results. In addition, parametric studies using theoretical method were also performed to find out the effect of parameters on the deflection. Based on the parametric studies, a simplified calculation formula of GFRP-concrete-steel composite beam was exhibited. In general, the calculation method could provide a more accurate theoretical result without complex finite element simulation, and serve for the further study of continuous GFRP-concrete-steel composite beams.

유한요소법을 이용한 유도전동기의 등가회로 정수 도출 (Calculation of the Equivalent Circuit Parameters of Induction Motor using Finite Element Analysis)

  • 심동하;한송엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 추계학술대회 논문집 학회본부
    • /
    • pp.55-57
    • /
    • 1997
  • This paper develops the advanced method for the calculation of the equivalent circuit parameters of induction motor. An Induction motor is magnetically coupled system. But the conventional motor (the permeance method) calculates the each component of parameters separately. And it highly depends on the experimental factors and experiences to compensate the errors due to the some assumptions. Rut the proposed method calculates the parameters fully from the results of 2 dimensional finite element analysis. So the complexity in geometry and the non linearity of induction motor can be considered. And the computational cost is reduced compared with the conventional field and circuit approach. The results are compared with parameters from the permeance method. And it is verified by the comparison with the experimental results.

  • PDF

하이브리드 방법을 이용한 배기계 소음 해석 (Noise Analysis of Intake System by Hybrid Method)

  • 이장명;한성수;임학종
    • 소음진동
    • /
    • 제9권2호
    • /
    • pp.310-316
    • /
    • 1999
  • 4-Pole parameter method based on an acoustic theory is very popular for the analysis of the acoustic behavior of the car exhaust system. However, this method is applicable only for the simple shape of acoustic elements of the muffler. Numerical methods such as FEM(Finite Element Method) or BEM(Boundary Element Method) can also provide acceptable results for the acoustic analysis of the car exhaust system. Even though these numerical methods have benefits for the analysis of complicated shape of acoustic elements of the muffler, time consuming is another problem during modeling and numerical calculation. Combining benefits of both methods, the new code called the hybrid method for car exhaust system is introduced. And the developed code is utilized for calculation of the transmission loss of a main muffler of an automobile comparing with the experimental results.

  • PDF

등온이원흡착시스템에 있어서 최적 계수 산정 (Calculation of Optimum Parameters on Dual Adsorption Isotherm System)

  • 김홍성;최해욱
    • 한국염색가공학회지
    • /
    • 제11권5호
    • /
    • pp.38-43
    • /
    • 1999
  • A calculation method of optimum parameters on dual adsorption isotherm system was examined. The optimum parameters were obtained by non-linear regression analysis based upon a limited solute concentration of dual adsorption isotherm. The results were analyzed with adducing experimental data of formerly reported treaties. The percentage mean deviation of dual adsorption equation calculated with optimum parameters was less than about 5% of experimental data, which was far less than results obtained with parameters of the adduced treatises.

  • PDF