• 제목/요약/키워드: Experimental Vehicle

검색결과 2,087건 처리시간 0.032초

구난장갑차 크레인 브래킷에 대한 구조건전성 평가 (Structural Integrity Evaluation for Crane Bracket of Armored Recovery Vehicle)

  • 정재웅;정운화;김천수;유영수;박경철;박기철
    • 한국군사과학기술학회지
    • /
    • 제16권5호
    • /
    • pp.653-658
    • /
    • 2013
  • For towing the new type armored vehicle and maintaining the close support, the armored recovery vehicle(ARV) with winch and crane has been developed. In case of crane, it is mainly used to salvage heavy objects by rotational and vertical motion. Especially, the crane bracket is very important parts due to fixing the ARV's body and rotary joint and preventing the force rotation of crane. Therefore, the crane bracket needs to have an enough strength to endure the high load and it is very important to analyze the stress distribution under loads. In the present work, the experimental and analytical investigation on structural integrity evaluation of crane bracket were carried out. The simulation of three-dimensional finite element method(FEM) was compared with experimental datum. From the numerical results, the FEM simulations corresponded well with th experimental results and the structural safety was confirmed by safety factor.

정압력원을 이용한 에너지 절감 유압 시스템에 관한 실험적 연구 (An Experimental Study on the Energy Saving Hydraulic System using Constant Pressure System)

  • 조용래;안경관;윤주현;이민수;조우근;윤홍수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1081-1086
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

  • PDF

해저 집광차량의 위치 추정을 위한 확장 칼만 필터 알고리즘 (Development of an Extended Kalman Filter Algorithm for the Localization of Underwater Mining Vehicles)

  • 원문철;차혁상;홍섭
    • 한국해양공학회지
    • /
    • 제19권2호
    • /
    • pp.82-89
    • /
    • 2005
  • This study deals with the development of the extended Kalman filter(EKF) algorithm for the localization of underwater mining vehicles. Both simulation and experimental studies in a test bed are carried out. For the experiments, a scale dawn tracked vehicle is run in a soil bin containing cohesive soil of bentonite-water mixture. To develop the EKF algorithm, we use a kinematic model including the inner/outer track slips and the slip angle for the vehicle. The measurements include the inner and outer wheel speeds from encoders, the heading angle from a compass sensor and a fiber optic rate gyro, and x and y coordinate position values from a vision system. The vision sensor replaces the LBL(Long Base Line) sonar system used in the real underwater positioning situations. Artificial noise signals mimicking the real LBL noise signal are added to the vision sensor information. To know the mean slip values of the tracks in both straight and cornering maneuver, several trial running experiments are executed before applying the EKF algorithm. Experimental results show the effectiveness of the EKF algorithm in rejecting the sensor measurements noise. Also, the simulation and experimental results show close correlations.

정압력원을 이용한 에너지 절감 유압 제어 시스템에 관한 실험적 연구 (An Experimental Study on the Energy Saving Hydraulic Control System Using Constant Pressure System)

  • 조용래;안경관;김정수;윤주현
    • 한국정밀공학회지
    • /
    • 제24권5호
    • /
    • pp.68-76
    • /
    • 2007
  • It is strongly requested to reduce fuel consumption because of high oil price and exhaust gases of road vehicles for environmental preservation. To solve these problems, several types of hybrid vehicles have been developed. Among them, flywheel hybrid vehicle using variable displacement pump/motor was already proposed as one of the feasible hybrid systems in place of hybrid vehicle by the conventional storage battery. The proposed flywheel hybrid vehicle is to keep constant pressure of high pressure line by the control of swash plate angle of flywheel pump/motor as pressure compensator. The efficiency of the overall system depends severely on the efficiency of hydraulic pump/motor in the energy saving hydraulic control system by simulation. According to the control methods of swash plate angle of piston pump/motor, there remain several problems to be solved. In this paper, experimental setup for energy saving is fabricated and the efficiency of energy saving is investigated by experiments with respect to various experimental conditions.

축냉 시스템이 차 실내 열 쾌적성에 미치는 영향에 관한 실험적 연구 (Experimental Study of the Effect on Cabin Thermal Comfort for Cold Storage Systems in Vehicles)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제23권4호
    • /
    • pp.428-435
    • /
    • 2015
  • This paper presents the experimental study of cabin thermal comfort using a cold storage heat exchanger in a vehicle air-conditioning system. Recent vehicle-applied ISG functions for fuel economy and emission, but when vehicles stop, compressors in the air-conditioning system stop, and the cabin temperature sharply increases, making passengers feel thermal discomfort. This study conducts thermal comfort evaluation in the vehicle, which is applied to a cold storage system for the climate control wind tunnel test and the vehicle fleet road test with various airflow volume rates and ambient temperatures blowing to the cold storage heat exchanger. The experimental results, in the cold storage system, air discharge temperature is $3.1-4.2^{\circ}C$ lower than current air-conditioning system when the compressor stops and provides cold air for at least 38 extra seconds. In addition, the blowing airflow volume to the cold storage heat exchanger with various ambient temperature was examined for the control logic of the cold storage system, and in the results, the airflow volume rate is dominant over the outside temperature. For this study, a cold storage system is economically useful to keep the cabin at a thermally comfortable level during the short period when the engine stops in ISG vehicles.

유선형 고속주행 버스의 공력특성에 관한 실험 연구 (An Experimental Study on the Aerodynamic Characteristics of a Streamline-designed High-speed Bus)

  • 김철호;이승현
    • 한국자동차공학회논문집
    • /
    • 제24권2호
    • /
    • pp.198-204
    • /
    • 2016
  • In this study, a wind tunnel test was conducted to measure the aerodynamic characteristics of a streamline-designed high-speed bus with the change of wind direction and speed and the result is compared with the aerodynamic performance of a commercialized high-speed bus model (Model-0) manufactured by Zyle Daewoo Bus Corp. Aerodynamic performance of the existing rear-spoiler was tested to prove its aerodynamic effect on the test model bus. From the study, it was found that 24.6 % of the total drag of the original bus model (Model-0) was reduced on the streamline-designed model bus(model-1) without the rear-spoiler but only 14.3 % of the total drag was reduced with the spoiler on the streamlined model bus. It means that the rear spoiler does not work properly with the streamlined model bus (model-1) and should be noted that an optimum design of a rear-spoiler of a vehicle is important to reduce the induced pressure drag and increase the driving stability of a vehicle against yaw motion. The experimental outcome was also compared to the previous numerical research result to evaluate the reliability of the numerical algorithm of the aerodynamic performance analysis of a vehicle. The error rate (%) of the numerical result to the experimental output is about 5.4 % and it is due to the simplified body configuration of the numerical model bus. The drag increases at the higher yaw angle because the transparent frontal area of the model vehicle increases and the downward force increases with the yaw angle as well. It has a positive effect to the driving stability of the vehicle but the moderated downward force should be kept for the fuel economy of a vehicle.

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

타이어와 차량 쏠림 I-시험결과 (Tire and Vehicle Pull I-Experimental Results)

  • 이정환;이주완
    • 한국자동차공학회논문집
    • /
    • 제8권4호
    • /
    • pp.194-201
    • /
    • 2000
  • It is called vehicle pull when a vehicle drifts in the lateral direction under the straight-ahead motion with no steering or external input. Recently vehicle pull draws attention as one of the critical evaluation items from the customers on the vehicle quality. It is generally recognized that the vehicle pull is complex phenomena due to internal and external factors. In this paper the relations between vehicle pull and ire were investigated through close survey on the road test results from the final inspection of car manufactures. Through this investigation the factors are identified which play an important role in causing vehicle pull problem.

  • PDF

FUZZY ESTIMATION OF VEHICLE SPEED USING AN ACCELEROMETER AND WHEEL SENSORS

  • HWANG J. K.;SONG C. K.
    • International Journal of Automotive Technology
    • /
    • 제6권4호
    • /
    • pp.359-365
    • /
    • 2005
  • The absolute longitudinal speed of a vehicle is estimated by using data from an accelerometer of the vehicle and wheel speed sensors of a standard 50-tooth antilock braking system. An intuitive solution to this problem is, 'When wheel slip is low, calculate the vehicle velocity from the wheel speeds; when wheel slip is high, calculate the vehicle speed by integrating signal of the accelerometer.' The speed estimator weighted with fuzzy logic is introduced to implement the above concept, which is formulated as an estimation method. And the method is improved through experiments by how to calculate speed from acceleration signal and slip ratios. It is verified experimentally to usefulness of estimation speed of a vehicle. And the experimental result shows that the estimated vehicle longitudinal speed has only a $6\%$ worst-case error during a hard braking maneuver lasting a few seconds.

차량 탑재용 카메라를 이용한 실시간 차량 번호판 인식 기법 (Real-time Vehicle License Plate Recognition Method using Vehicle-loaded Camera)

  • 장재건
    • 인터넷정보학회논문지
    • /
    • 제6권3호
    • /
    • pp.147-158
    • /
    • 2005
  • 나날이 심각해지는 교통문제에서 차량에 대한 정보를 이용하여 교통흐름을 개선해 줄 뿐만 아니라, 교통위반 차량을 효율적으로 적발할 수 있다. 차량 번호판은 차량정보를 인식하는데 중요하게 사용될 수 있다. 본 논문에서는 이동식 형태인 차량에 탑재한 카메라를 이용하여 촬영한 영상에서 차량의 번호판을 인식하는 새로운 기법을 제안한다. 여러 단계의 영상처리 과정과 인식 과정을 거쳐서 실시간에 처리할 수 있는 시스템으로 일반 차량뿐 아니라 특장차에 대한 인식도 가능하게 한다. 제안한 기법을 이용한 실제적 환경에서의 영상과 인식에 대한 결과가 실험결과에서 보여진다.

  • PDF