• Title/Summary/Keyword: Experimental Design Technique

Search Result 1,033, Processing Time 0.029 seconds

Multi-sensor Fusion Based Guidance and Navigation System Design of Autonomous Mine Disposal System Using Finite State Machine (유한 상태 기계를 이용한 자율무인기뢰처리기의 다중센서융합기반 수중유도항법시스템 설계)

  • Kim, Ki-Hun;Choi, Hyun-Taek;Lee, Chong-Moo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.6
    • /
    • pp.33-42
    • /
    • 2010
  • This research propose a practical guidance system considering ocean currents in real sea operation. Optimality of generated path is not an issue in this paper. Way-points from start point to possible goal positions are selected by experienced human supervisors considering major ocean current axis. This paper also describes the implementation of a precise underwater navigation solution using multi-sensor fusion technique based on USBL, GPS, DVL and AHRS measurements in detail. To implement the precise, accurate and frequent underwater navigation solution, three strategies are chosen. The first one is the heading alignment angle identification to enhance the performance of standalone dead-reckoning algorithm. The second one is that absolute position is fused timely to prevent accumulation of integration error, where the absolute position can be selected between USBL and GPS considering sensor status. The third one is introduction of effective outlier rejection algorithm. The performance of the developed algorithm is verified with experimental data of mine disposal vehicle and deep-sea ROV.

Comparison of mechanical and biological properties of zirconia and titanium alloy orthodontic micro-implants

  • Choi, Hae Won;Park, Young Seok;Chung, Shin Hye;Jung, Min Ho;Moon, Won;Rhee, Sang Hoon
    • The korean journal of orthodontics
    • /
    • v.47 no.4
    • /
    • pp.229-237
    • /
    • 2017
  • Objective: The aim of this study was to compare the initial stability as insertion and removal torque and the clinical applicability of novel orthodontic zirconia micro-implants made using a powder injection molding (PIM) technique with those parameters in conventional titanium micro-implants. Methods: Sixty zirconia and 60 titanium micro-implants of similar design (diameter, 1.6 mm; length, 8.0 mm) were inserted perpendicularly in solid polyurethane foam with varying densities of 20 pounds per cubic foot (pcf), 30 pcf, and 40 pcf. Primary stability was measured as maximum insertion torque (MIT) and maximum removal torque (MRT). To investigate clinical applicability, compressive and tensile forces were recorded at 0.01, 0.02, and 0.03 mm displacement of the implants at angles of $0^{\circ}$, $10^{\circ}$, $20^{\circ}$, $30^{\circ}$, and $40^{\circ}$. The biocompatibility of zirconia micro-implants was assessed via an experimental animal study. Results: There were no statistically significant differences between zirconia micro-implants and titanium alloy implants with regard to MIT, MRT, or the amount of movement in the angulated lateral displacement test. As angulation increased, the mean compressive and tensile forces required to displace both types of micro-implants increased substantially at all distances. The average bone-to-implant contact ratio of prototype zirconia micro-implants was $56.88{\pm}6.72%$. Conclusions: Zirconia micro-implants showed initial stability and clinical applicability for diverse orthodontic treatments comparable to that of titanium micro-implants under compressive and tensile forces.

Adaptive Data Mining Model using Fuzzy Performance Measures (퍼지 성능 측정자를 이용한 적응 데이터 마이닝 모델)

  • Rhee, Hyun-Sook
    • The KIPS Transactions:PartB
    • /
    • v.13B no.5 s.108
    • /
    • pp.541-546
    • /
    • 2006
  • Data Mining is the process of finding hidden patterns inside a large data set. Cluster analysis has been used as a popular technique for data mining. It is a fundamental process of data analysis and it has been Playing an important role in solving many problems in pattern recognition and image processing. If fuzzy cluster analysis is to make a significant contribution to engineering applications, much more attention must be paid to fundamental decision on the number of clusters in data. It is related to cluster validity problem which is how well it has identified the structure that Is present in the data. In this paper, we design an adaptive data mining model using fuzzy performance measures. It discovers clusters through an unsupervised neural network model based on a fuzzy objective function and evaluates clustering results by a fuzzy performance measure. We also present the experimental results on newsgroup data. They show that the proposed model can be used as a document classifier.

An Experimental Investigation for the Effects of Pre-loading on the Ground Movement in Sand (선행하중 적용시 흙막이 벽체 및 주변지반의 거동에 관한 굴착모형실험)

  • 이봉열;김학문
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.15-26
    • /
    • 2003
  • Urban excavation requires highly reliable prediction technique for the design and construction of earth retaining structure in order to protect adjacent structures around deep excavation. Application of the pre-loading of bracing for deep excavation has been reported, and the known beneficial effects are not fully understood and recognized by many practitioners. Model tests have been carried out to evaluate the efficiency of pre-loading system in reducing ground settlement as well as prediction of structural damage around excavation in sand. The test results revealed that the applied pre-loading of 50% and 70% showed about 20% of reduction in horizontal wall displacement and 30∼40% reduction in ground settlement. Also, bracing forces and earth pressure distribution behind the wall have been monitored during pre-loading at various excavation stages.

Design Optimization Techniques for the SSD Controller (SSD 컨트롤러 최적 설계 기법)

  • Yi, Doo-Jin;Han, Tae-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.8
    • /
    • pp.45-52
    • /
    • 2011
  • Flash memory is becoming widely prevalent in various area due to high performance, non-volatile features, low power, and robust durability. As price-per-bit is decreased, NAND flash based SSDs (Solid State Disk) have been attracting attention as the next generation storage device, which can replace HDDs (Hard Disk Drive) which have mechanical properties. Especially for the single package SSD, if channel number or FIFO buffer size per channel increases to improve performance, the size of a controller and I/O pin count will increase linearly with channel numbers and form factor will be affected. We propose a novel technique which can minimize form factor by optimizing the number of NAND flash channels and the size of interface FIFO buffer in the SSD. For SSD with 10 channel and double buffer, the experimental results show that buffer block size can be reduced about 73% without performance degradation and total size of a controller can be reduced about 40% because control block per channel and I/O pin count decrease according to decrease channel number.

Hardware Design of High Performance CAVLC Encoder (H.264/AVC를 위한 고성능 CAVLC 부호화기 하드웨어 설계)

  • Lee, Yang-Bok;Ryoo, Kwang-Ki
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.3
    • /
    • pp.21-29
    • /
    • 2012
  • This paper presents optimized searching technique to improve the performance of H.264/AVC. By using the proposed forward and backward searching algorithm, redundant cycles of latency for data reordering can be removed. Furthermore, in order to reduce the total number of execution cycles of CAVLC encoder, early termination mode and two stage pipelined architecture are proposed. The experimental result shows that the proposed architecture needs only 36.0 cycles on average for each $16{\times}16$ macroblock encoding. The proposed architecture improves the performance by 57.8% than that of previous designs. The proposed CAVLC encoder was implemented using Verilog HDL and synthesized with Magnachip $0.18{\mu}m$ standard cell library. The synthesis result shows that the gate count is about 17K with 125Mhz clock frequency.

Flow Evaluation and Hemolysis Analysis of BVAD Centrifugal Blood Pump by Computational Fluids Dynamics

  • Bumrungpetch, Jeerasit;Tan, Andy Chit;Liu, Shu-Hong;Luo, Xian-Wu;Wu, Qing-Yu;Yuan, Jian-Ping;Zhang, Ming-Kui
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.1
    • /
    • pp.34-41
    • /
    • 2014
  • Computational fluid dynamics (CFD) and particle image velocimetry (PIV) are commonly used techniques to evaluate the flow characteristics in the development stage of blood pumps. CFD technique allows rapid change to pump parameters to optimize the pump performance without having to construct a costly prototype model. These techniques are used in the construction of a bi-ventricular assist device (BVAD) which combines the functions of LVAD and RVAD in a compact unit. The BVAD construction consists of two separate chambers with similar impellers, volutes, inlet and output sections. To achieve the required flow characteristics of an average flow rate of 5 l/min and different pressure heads (left - 100mmHg and right - 20mmHg), the impellers were set at different rotating speeds. From the CFD results, a six-blade impeller design was adopted for the development of the BVAD. It was also observed that the fluid can flow smoothly through the pump with minimum shear stress and area of stagnation which are related to haemolysis and thrombosis. Based on the compatible Reynolds number the flow through the model was calculated for the left and the right pumps. As it was not possible to have both the left and right chambers in the experimental model, the left and right pumps were tested separately.

A Study on the Design of Power Amplifier for the Repeater using Code Division Multiple Access (CDMA방식 중계기용 전력증폭기의 설계에 관한 연구)

  • Kim, Han-Suk;Kim, Hoon-Yong;Kim, Dae-Jyung;Lee, Jong-Arc
    • Journal of IKEEE
    • /
    • v.3 no.2 s.5
    • /
    • pp.268-275
    • /
    • 1999
  • In this paper, a new type of linearization technique proposed, in which the predistortor was added to the feedforward linearizer. As the input power level is applied to HPA, the gain and phase characteristics of the amplifier are also varied. By using of the predistorter the amplitude imbalance and phase imbalance is kept constant. Experimental results are present for Korea PCS frequency band. The center frequency of the feedforward amplifier is 1.843.75 MHz with 1.23 MHz bandwidth. The 2-tone intermodulation distortion at 37dBm output power is about -50dBc, and spurious emission are -46dBc at $fc{\pm}\;885KHz\;and\;-52dBc\;at\;fc\;{\pm}1.98MHz$, respectively.

  • PDF

The Application of Structural Stress Method for the Fatigue Strength Assessment of Longi-web Connections (선체 Longi-web 연결부의 피로강도 평가를 위한 구조응력 기법의 적용)

  • Kim, Myung-Hyun;Kim, Jeong-Hwan;Kim, Seong-Min;Kim, Kwang-Seok;Kang, Joong-Kyoo;Heo, Joo-Ho;Kang, Sung-Won
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.1
    • /
    • pp.81-86
    • /
    • 2008
  • Recently, a mesh-size insensitive structural stress definition that provides a stress state at weld toe with relatively larger mesh size compared to conventional approaches has been proposed. The structural stress definition is based on the elementary structural mechanics theory and provides an effective measure of a stress state in front of weld toe. In this study, as an experimental validation of structural stress method in obtaining the fatigue strength of weldments, a series of fatigue test has carried out for longi-web connections, which are representative of ship-like structures. Based on the result from this study, it is expected to develop a more precise fatigue strength evaluation technique and to reduce time and cost associated with the fatigue design of ship and offshore structures.

A Study on the Prediction of Teeth Deformation of the Automobile Transmission Part(Shaft/Gear) in Warm Shrink Fitting Process (온간압입공정에서 자동차 변속기 단품(축/기어) 치형 변화 예측에 관한 연구)

  • Kim, Ho-Yoon;Choi, Chang-Jin;Bae, Won-Byong;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.54-60
    • /
    • 2006
  • Fitting process carried out in automobile transmission assembly line is classified into three classes; heat fitting, press fitting, and their combined fitting. Heat fitting is a method that heats gear to a suitable range under the tempering temperature and squeezes it toward the outer diameter of shaft. Its stress depends on the yield strength of gear. Press fitting is a method that generally squeezes gear toward that of shaft at room temperature by press. Another method heats warmly gear and safely squeezes it toward that of shaft. Warm shrink fitting process for automobile transmission part is now gradually increased, but the parts (shaft/gear) assembled by this process produced dimensional changes of gear profile in both radial and circumferential directions. So that it may cause noise and vibration between gears. In order to solve these problems, we need an analysis of warm shrink fitting process, in which design parameters are involved; contact pressure according to fitting interference between outer diameter of shaft and inner diameter of gear, fitting temperature, and profile tolerance of gear. In this study, an closed form equation to predict contact pressure and fitting load was proposed in order to develop optimization technique of warm shrink fitting process and verified its reliability through the experimental results measured in the field and FEM, that is, thermal-structural coupled field analysis. Actual loads measured in the field have a good agreement with the results obtained by theoretical and finite element analysis and also the expanded amounts of the gear profile in both radial and circumferential directions are within the limit tolerances used in the field.