• Title/Summary/Keyword: Expected Software Lifetime

Search Result 14, Processing Time 0.018 seconds

Analysis on Delta-Vs to Maintain Extremely Low Altitude on the Moon and Its Application to CubeSat Mission

  • Song, Young-Joo;Lee, Donghun;Kim, Young-Rok;Jin, Ho;Choi, Young-Jun
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.213-223
    • /
    • 2019
  • This paper analyzes delta-Vs to maintain an extremely low altitude on the Moon and investigates the possibilities of performing a CubeSat mission. To formulate the station-keeping (SK) problem at an extremely low altitude, current work has utilized real-flight performance proven software, the Systems Tool Kit Astrogator by Analytical Graphics Inc. With a high-fidelity force model, properties of SK maneuver delta-Vs to maintain an extremely low altitude are successfully derived with respect to different sets of reference orbits; of different altitudes as well as deadband limits. The effect of the degree and order selection of lunar gravitational harmonics on the overall SK maneuver strategy is also analyzed. Based on the derived SK maneuver delta-V costs, the possibilities of performing a CubeSat mission are analyzed with the expected mission lifetime by applying the current flight-proven miniaturized propulsion system performances. Moreover, the lunar surface coverage as well as the orbital characteristics of a candidate reference orbit are discussed. As a result, it is concluded that an approximately 15-kg class CubeSat could maintain an orbit (30-50 km reference altitude having ${\pm}10km$ deadband limits) around the Moon for 1-6 months and provide almost full coverage of the lunar surface.

Computer modelling of fire consequences on road critical infrastructure - tunnels

  • Pribyl, Pavel;Pribyl, Ondrej;Michek, Jan
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • The proper functioning of critical points on transport infrastructure is decisive for the entire network. Tunnels and bridges certainly belong to the critical points of the surface transport network, both road and rail. Risk management should be a holistic and dynamic process throughout the entire life cycle. However, the level of risk is usually determined only during the design stage mainly due to the fact that it is a time-consuming and costly process. This paper presents a simplified quantitative risk analysis method that can be used any time during the decades of a tunnel's lifetime and can estimate the changing risks on a continuous basis and thus uncover hidden safety threats. The presented method is a decision support system for tunnel managers designed to preserve or even increase tunnel safety. The CAPITA method is a deterministic scenario-oriented risk analysis approach for assessment of mortality risks in road tunnels in case of the most dangerous situation - a fire. It is implemented through an advanced risk analysis CAPITA SW. Both, the method as well as the resulting software were developed by the authors' team. Unlike existing analyzes requiring specialized microsimulation tools for traffic flow, smoke propagation and evacuation modeling, the CAPITA contains comprehensive database with the results of thousands of simulations performed in advance for various combinations of variables. This approach significantly simplifies the overall complexity and thus enhances the usability of the resulting risk analysis. Additionally, it provides the decision makers with holistic view by providing not only on the expected risk but also on the risk's sensitivity to different variables. This allows the tunnel manager or another decision maker to estimate the primary change of risk whenever traffic conditions in the tunnel change and to see the dependencies to particular input variables.

Exposure and Health Risk Assessment of Lead Workers using Monte-Carlo Simulation (납 취급 근로자의 Monte-Carlo simulation을 이용한 노출 및 건강위해성평가)

  • Yeom, Jung Ho;Gwon, Keun Sang;Lee, Ju-Hyoung;Jeong, Joo-Won
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.2
    • /
    • pp.110-122
    • /
    • 2006
  • Objective : This study was conducted to quantify chronic lead exposure from various media(ie. working environment, food, ambient air), and to certify the usefulness of exposure assessment using Monte-Carlo simulation in the fields of occupational health. Methods : Data were obtained from Korean Industrial Health Association, Korea Food and Drug Administration, and the Ministry of Environment. Then lead worker's exposure was estimated indirectly from various media and parameters (ie. volume inhaled, body weight, dietary intake, etc.). Uncertainty was analyzed by Monte Carlo simulation with Crystal Ball software. Exposure doses and hazard indices were simulated with various hypothetical scenarios including weekly working hours and respiratory protective equipment. Results : Without respiratory protective equipment, the total exposure dose per kilogram of body weight of lead workers was estimated as $5.45{\times}10^{-3}mg/kg/day$, and hazard index was estimated as 2.26, and exposure contributions were calculated as follows : working environment(82.42 %); foods(17.57 %); and ambient air(0.01 %). But, if working condition has changed - reduction of working hours and using respiratory protective equipment, the total exposure dose per kilogram of body weight was estimated between $1.34{\times}10^{-3}-1.49{\times}10^{-3}mg/kg/day$, and hazard index was estimated between 0.56 - 0.62. Conclusions : This study suggested that occurrence of hazardous impact(ie. increased blood pressure) through lifetime lead exposure would be expected, and that the Monte-Carlo simulation was useful for the fields of occupational health.

Optical Properties Analysis of SiNx Double Layer Anti Reflection Coating by PECVD

  • Gong, Dae-Yeong;Park, Seung-Man;Yi, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.149-149
    • /
    • 2010
  • The double-layer antireflection (DLAR) coatings have significant advantages over single-layer antireflection (SLAR) coatings. This is because they will be able to cover a broad range of the solar spectrum which would enhance the overall performance of solar cells. Moreover films deposited at high frequency are expected to show excellent and UV-stable passivation in the refractive index that we adopted. In this work, we present a novel DLAR coating using SiNx:H thin films with refractive indices 1.9 and 2.3 as the top and bottom layers. This approach is cost effective when compared to earlier DLAR coatings with two different materials. SiNx:H films were deposited by Plasma enhanced chemical vapor deposition (PECVD) technique using $SiH_4$, $NH_3$ and $N_2$ gases with flow rates 20~80sccm, 200sccm and 85 sccm respectively. The RF power, plasma frequency and substrate temperature for the deposition were 300W, 13.56 MHz and $450^{\circ}C$, respectively. The optimum thickness and refractive indices values for DLAR coatings were estimated theoretically using Macleod simulation software as 82.24 nm for 1.9 and 68.58 nm for 2.3 respectively. Solar cells were fabricated with SLAR and DLAR coatings of SiNx:H films and compared the cell efficacy. SiNx:H> films deposited at a substrate temperature of $450^{\circ}C$ and that at 300 W power showed best effective minority carrier lifetime around $50.8\;{\mu}s$. Average reflectance values of SLAR coatings with refractive indices 1.9, 2.05 and 2.3 were 10.1%, 9.66% and 9.33% respectively. In contrast, optimized DLAR coating showed a reflectance value as low as 8.98% in the wavelength range 300nm - 1100nm.

  • PDF