• Title/Summary/Keyword: Expected Annual Damage

Search Result 30, Processing Time 0.027 seconds

Annual Loss Probability Estimation of Steel Moment-Resisting Frames(SMRFs) using Seismic Fragility Analysis (지진취약도를 통한 철골모멘트골조의 연간 손실 평가)

  • Jun, Saemee;Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.517-524
    • /
    • 2014
  • The ultimate goal of seismic design is to reduce the probable losses or damages occurred during an expected earthquake event. To achieve this goal, this study represents a procedure that can estimate annual loss probability of a structure damaged by strong ground motion. First of all, probabilistic seismic performance assessment should be performed using seismic fragility analyses that are presented by a cumulative distribution function of the probability in each exceedance structural damage state. A seismic hazard curve is then derived from an annual frequency of exccedance per each ground motion intensity. An annual loss probability function is combined with seismic fragility analysis results and seismic hazard curves. In this paper, annual loss probabilities are estimated by the structural fragility curve of steel moment-resisting frames(SMRFs) in San Francisco Bay, USA, and are compared with loss estimation results obtained from the HAZUS methodology. It is investigated from the comparison that seismic losses of the SMRFs calculated from the HAZUS method are conservatively estimated. The procedure presented in this study could be effectively used for future studies related with structural seismic performance assessment and annual loss probability estimation.

Calculation of optimal design flood using cost-benefit analysis with uncertainty (불확실성이 고려된 비용-편익분석 기법을 도입한 최적설계홍수량 산정)

  • Kim, Sang Ug;Choi, Kwang Bae
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.6
    • /
    • pp.405-419
    • /
    • 2022
  • Flood frequency analysis commonly used to design the hydraulic structures to minimize flood damage includes uncertainty. Therefore, the most appropriate design flood within a uncertainty should be selected in the final stage of a hydraulic structure, but related studies were rarely carried out. The total expected cost function introduced into the flood frequency analysis is a new approach for determining the optimal design flood. This procedure has been used as UNCODE (UNcertainty COmpliant DEsign), but the application has not yet been introduced in South Korea. This study introduced the mathematical procedure of UNCODE and calculated the optimal design flood using the annual maximum inflow of hydroelectric dams located in the Bukhan River system and results were compared with that of the existing flood frequency. The parameter uncertainty was considered in the total expected cost function using the Gumbel and the GEV distribution, and the Metropolis-Hastings algorithm was used to sample the parameters. In this study, cost function and damage function were assumed to be a first-order linear function. It was found that the medians of the optimal design flood for 4 Hydroelectric dams, 2 probability distributions, and 2 return periods were calculated to be somewhat larger than the design flood by the existing flood frequency analysis. In the future, it is needed to develop the practical approximated procedure to UNCODE.

A Quantative Population Dynamic Model for Estimating Damages in Fishery Production in the Benthic Ecosystem of Abalone Culture Grounds (전복양식장 저서생태계의 훼손으로 인한 어업자원의 생산감소량 추정 모델)

  • KANG Yong Joo;ZHANG Chang Ik
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.4
    • /
    • pp.409-416
    • /
    • 2003
  • Marine populations are maintained through the processes of spawning, growth, recruitment, natural death and fishing in a marine ecosystem. Based upon each of these processes, a quantitative population dynamic model was developed to estimate damages in fishery production due to accidents in a fishing ground. This model was applied for the abalone culture grounds in Korean waters. Three components of damages were identified in the ecosystem of the abalone culture grounds, namely, physical damages in the substratum of the fishing ground, biological damages in the structure and function of the ecosystem, and damages in fishery production. Considering these three components the processes and durations of damages in fishery production were determined. Because the abalone population is composed of multiple year classes, damages influence all the year classes in the population, when they occur The model developed in this study is: $$y=(n_{\lambda}+1){\times}Y_E\;-\;\sum\limits^{n_\lambda-n_c}_{l=0}\;y_{n_c/i}$$ where, y is the expected damages in fishery production during the period of restoration of the damaged abalony population, $Y_E$ is the annual equilibrium yield, $n_{\lambda}$ is the maximum age in the population, $t_s$ is the year of damage occurrence, $n_c$ is the age at recruitment, and $\sum\limits^{n_\lambda-n_c}_{l=0}\;y\;_{n_c/i}$ is total expected lifetime catch of year classes which were recruited during the restoration period.

Revision of Agricultural Drainage Design Standards (농업생산기반정비사업 계획설계기준 배수편 개정)

  • Kim, Kyoung Chan;Kim, Younghwa;Song, Jaedo;Chung, Sangok
    • KCID journal
    • /
    • v.21 no.1
    • /
    • pp.32-44
    • /
    • 2014
  • In Korea, global warming caused by the climate changes impacted on weather system with increase in frequency and intensity of precipitation, and the rainfall pattern changes significantly by regional groups. Furthermore, it is expected that the regional and annual fluctuation ranges of the rainfall in the future would be more severe. Nowadays, agricultural drainage system designed by the existing standard of 20-year return period and 2 days of fixation time cannot deal with the increment rainfall such as localized heavy rain and local torrential rainfalls. Therefore, it is required to reinforce the standard of the drainage system in order to reduce the agricultural flood damage brought by unusual weather. In addition, it is needed to improve the standard of agricultural drainage design in order to cultivate farm products in paddy fields as facility vegetable cultivation and up-land field crop have been damaged by the moisture injury and flooding. In order to prepare for the changes of rainfall pattern due to climate changes and improve the agricultural drainage design standards by the increase of cultivating farm products, the purpose of this study is to examine the impact of climate changes, the changes of relative design standard, and the analytic situation of agricultural flood damages, to consider the drainage design standard revision, and finally to prepare for enhanced agricultural drainage design standards.

  • PDF

Estimation of evapotranspiration change due to the 2019 April Gangwon-do wildfire using remote-sensing data

  • Kim, JiHyun;Sohn, Soyoung;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.4-4
    • /
    • 2020
  • Three wildfires severely damaged local towns and forests in Gangwon-do, South Korea in 2019 April 4-5. Local hydrological regime could be greatly altered by the wildfires, therefore it is important to assess its damage (e.g. area and severity) and also resultant changes in hydrological fluxes. We retrieved the Normalized-Burned Ratio (NBR) index using remote-sensing data (Moderate Resolution Imaging Spectroradiometer (MODIS) 500-m 8-day surface reflectance data), and delineated the damaged-area based on the difference in the NBR (dNBR) before and after the wildfires. We then estimated changes in the annual evapotranspiration (AET) in 2019 using the MODIS evapotranspiration data (500-m 8-day). It was found that the damaged-area of the three wildfires was 29.50 km^2 in total, which take up 1.00-6.19% area of five catchments. It was estimated that the AET would be decreased as 0.05-1.56% over those five catchments, as compared to the pre-fire AET (2004-2018). The impact of the wildfires on the catchment AET was less severe than expected (i.e. up to 1.56%) mostly because two big wildfires were distributed across two catchments respectively (i.e. four catchments for the two wildfires) and the other wildfire was small and not severe. This study highlights the importance of assessing the area and severity of a wildfire when estimating its impact on the local hydrological cycle.

  • PDF

The Quantification of Flood Damage Using K-FRM (K-FRM을 이용한 홍수피해액 정량화)

  • Yeong Uk Yu;In Gyu Hwang;Yeon Jeong Seong;Young Hun Jung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.405-405
    • /
    • 2023
  • 최근 기후변화로 인한 극심한 홍수와 가뭄, 폭염 등 이상 기온 및 기후에 따른 피해가 급격히 증가하는 추세이다. 특히, 집중호우로 인해 도심지에서 발생한 홍수피해는 재산피해뿐만 아닌 수 많은 인명피해가 발생하고 있다. 국내에서는 수재해로부터 인명과 재산을 보호하기 위해 용수공급과 체계적인 치수 사업이 행한 바 있다. 이러한 치수 사업에서 경제성 분석은 사업 전·후 의 편익추정이 완벽히 검증되기 쉽지 않으며, 기존의 치수 계획은 유역 전반에 걸쳐 다양한 홍수 방어시설의 종합적인 고려 없이 제방 중심으로만 수립되어 홍수 발생 시 하천에 과도한 부담을 줄 뿐만 아니라, 사업의 경제성이 낮게 평가되고 있다. 이렇게 국내에서 행해진 하천설계기준에서 제안되었던 경제성 분석 방법은 여러 가지 문제점들을 내포하고 있으며 지속적인 홍수피해가 발생하였다. 이와 같은 문제점들을 개선하고자 개발된 K-FRM(Forean-Flood-Risk Model)은 능동형 하천정보 운영을 통한 다차원 하천관리체계 구축 및 활용을 위한 정량적 위험도 평가 툴로 위험지역에 노출된 자산의 정보(인벤토리), 평가기준, 손상함수, 계량화 원단위 등 홍수피해를 추정하는데 활용이 가능하며, 손실 또는 피해액으로 표현되는 재해손실은 경제적인 관점에서의 위험이며 금전적인 형태로 표현된다. 본 연구에서는 홍수피해액 정량화 모델인 K-FRM을 활용하여 굴포천 유역과 영강 유역을 대상으로 항목별 피해액 산정 후, 정량적 피해액 산정 방법인 EAD(Expected Annual Damage) 분석을 통해 홍수피해위험지도를 작성하여 표준유역별, 행정구역별 홍수피해액을 산정하는 것을 목적으로 한다.

  • PDF

A Study on Distribution System Assessment and Interruption Cost Calculation for the Industry Load by the Analytic Approach Method (해석적방법론에 의한 산업용 수용가의 공급지장비 산정 및 배전계통에의 적용)

  • Kim, Yong-Ha;Woo, Sung-Min;Baek, Byum-Min;Sin, Hyung-Chul;Park, Chang-Kyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.4
    • /
    • pp.47-55
    • /
    • 2009
  • This paper estimates interruption cost assessment for industrial load. For executing In this way first, we research customer interruption cost(CIC) for industrial load about 1,026 unit. And to assess industrial load in D/L calculate sector customer damage function(SCDF) using CIC. Second, we compute distribution reliability through annual failure rate, repair time and so on, and then, Third, distribution system that calculate VBDRA for industrial load per alternative assesses interruption cost.

Study on River Management Plan Considering Ecological Preservation and Flood Control of Riverine Wetland (하도습지의 생태보전 및 치수를 고려한 하천관리 방안 연구)

  • Ann, Byoung-Yun;Kim, Taek-Min;Hong, Seung-Jin;Kim, Gil-Ho;Kim, Soo-Jun;Kim, Jae-Geun;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.463-476
    • /
    • 2014
  • The riverine wetlands located in the riverside bring about social conflicts through confrontation between flood control value through flood control project and ecological preservation value of riverine wetland. In this study, we identified the importance of both values through analysis of economic feasibility of flood control and ecological values of riverine wetland, and tried to suggest management plans for riverine wetland considering both of flood control safety and ecological preservation through these results. For this, we calculated the expected annual flood damage of Imjin River using the multi-dimensional flood damage analysis(MD-FDA), and calculated the total value of riverine wetland using the contingent valuation method(CVM) to estimate preservation value of riverine wetland. The result of the analysis shows that the Imjin River needs flood control project and the ecological preservation of riverine wetland is also important. Therefore, the establishment of the management plan for protecting riverine wetland is also needed. As a result, the Imjin riverine wetland was classified as the area where sedimentation continues to take place, and the flood water level to rise. On the basis of the analyzed results, it is judged that the Imjin River needs flood control for public safety and ecological consideration for ecosystem preservation in the river improvement project. So, the stepwise river improvement is desirable to protect riverine wetland and minimize ecosystem disturbance. The results is expected to be made good use as the basic study for establishment of institutional river management plans considering flood control project and riverine wetland preservation in the future.

Development of a New Flood Index for Local Flood Severity Predictions (국지홍수 심도예측을 위한 새로운 홍수지수의 개발)

  • Jo, Deok Jun;Son, In Ook;Choi, Hyun Il
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.47-58
    • /
    • 2013
  • Recently, an increase in the occurrence of sudden local flooding of great volume and short duration due to global climate changes has occasioned the significant danger and loss of life and property in Korea as well as most parts of the world. Such a local flood that usually occurs as the result of intense rainfall over small regions rises quite quickly with little or no advance warning time to prevent flood damage. To prevent the local flood damage, it is important to quickly predict the flood severity for flood events exceeding a threshold discharge that may cause the flood damage for inland areas. The aim of this study is to develop the NFI (New Flood Index) measuring the severity of floods in small ungauged catchments for use in local flood predictions by the regression analysis between the NFI and rainfall patterns. Flood runoff hydrographs are generated from a rainfall-runoff model using the annual maximum rainfall series of long-term observations for the two study catchments. The flood events above a threshold assumed as the 2-year return period discharge are targeted to estimate the NFI obtained by the geometric mean of the three relative severity factors, such as the flood magnitude ratio, the rising curve gradient, and the flooding duration time. The regression results show that the 3-hour maximum rainfall depths have the highest relationships with the NFI. It is expected that the best-fit regression equation between the NFI and rainfall characteristics can provide the basic database of the preliminary information for predicting the local flood severity in small ungauged catchments.

Analysis of Failure Probability of Armor Units and Uncertainties of Design Wave Heights due to Uncertainties of Parameters in Extreme Wave Height Distributions (극치파고분포의 모수 불확실성에 따른 설계파고의 불확실성 및 피복재의 파괴확률 해석)

  • Lee, Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.2
    • /
    • pp.120-125
    • /
    • 2010
  • A Monte-Carlo simulation method is proposed which can take uncertainties of scale and location parameters of Gumbel distribution into account straightforwardly in evaluating significant design wave heights with respect to return periods. The uncertainties of design wave heights may directly depend on the amounts of uncertainties of scale parameter and those distributions may be followed by Gumbel distribution. In case of that the expected values of maximum significant wave height during lifetime of structures are considered to be the design wave heights, more uncertainties are happened than in those evaluated according to return periods with encounter probability concepts. In addition, reliability analyses on the armor units are carried out to investigate into the effects of the uncertainties of design wave heights on the probability of failure. The failure probabilities of armor units to 5% damage level for 50 return periods are evaluated and compared according to the methods of taking uncertainties of design wave heights into account. It is found that the probabilities of failure may be distributed into wide ranges of bounds when the uncertainties of design wave heights are assumed to be same as those of annual maximum significant wave heights.