• Title/Summary/Keyword: Expansive Clay

Search Result 15, Processing Time 0.026 seconds

Mechanical properties and microstructures of stabilised dredged expansive soil from coal mine

  • Chompoorat, Thanakorn;Likitlersuang, Suched;Sitthiawiruth, Suwijuck;Komolvilas, Veerayut;Jamsawang, Pitthaya;Jongpradist, Pornkasem
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.143-157
    • /
    • 2021
  • Expansive soil is the most predominant geologic hazard which shows a large amount of shrinkage and swelling with changes in their moisture content. This study investigates the macro-mechanical and micro-structural behaviours of dredged natural expansive clay from coal mining treated with ordinary Portland cement or hydrated lime addition. The stabilised expansive soil aims for possible reuse as pavement materials. Mechanical testing determined geotechnical engineering properties, including free swelling potential, California bearing ratio, unconfined compressive strength, resilient modulus, and shear wave velocity. The microstructures of treated soils are observed by scanning electron microscopy, x-ray diffraction, and energy dispersive spectroscopy to understand the behaviour of the expansive clay blended with cement and lime. Test results confirmed that cement and lime are effective agents for improving the swelling behaviour and other engineering properties of natural expansive clay. In general, chemical treatments reduce the swelling and increase the strength and modulus of expansive clay, subjected to chemical content and curing time. Scanning electron microscopy analysis can observe the increase in formation of particle clusters with curing period, and x-ray diffraction patterns display hydration and pozzolanic products from chemical particles. The correlations of mechanical properties and microstructures for chemical stabilised expansive clay are recommended.

Using cement dust to reduce swelling of expansive soil

  • AlZubaidi, Raddi M.;AlRawi, Kawkab H.;AlFalahi, Ahmed J.
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.565-574
    • /
    • 2013
  • Extensive study was carried out on Clay expansive soil. This soil was silty clay and can be classified as CH. The degree of expansion was found to range from low to medium depending on the free swell and swell pressure tests. The research investigated the effect of using cement dust on swelling potential, Atterberg Limit, linear shrinkage, and mineralogical composition of expansive soil. The results showed that the swelling potential, plasticity index, linear shrinkage, and clay minerals decrease with increasing cement dust percentage. The cement dust accumulates in huge amounts as a side product in cement factories, and the disposal of this fine dust is very difficult and poses an environmental threat.

Soil water characteristic curve and improvement in lime treated expansive soil

  • Al-Mahbashi, Ahmed M.;Elkady, Tamer Y.;Alrefeai, Talal O.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.687-706
    • /
    • 2015
  • Methods commonly used to evaluate the improvement of lime-treated expansive soil include swelling characteristics and unconfined compressive strength. In the field, lime-treated expansive soils are in compacted unsaturated state. Soil water characteristic curves (SWCCs) represent a key parameter to interpret and describe the behavior of unsaturated expansive soil. This paper investigates the use of SWCC as a technique to evaluate improvements acquired by expansive soil after lime treatment. Three different lime contents were considered 2%, 4% and 6% by dry weight of clay. Series of tests were performed to determine the SWCC for the different lime content under curing periods of 7 and 28 day. Correlations between key features of the soil water characteristic curves of lime treated expansive soils and basic engineering behavior such as swelling characteristics and unconfined compression strength were established. Test results revealed that initial slope ($S_1$), saturated water content ($w_{sat}$), and air entry value (AEV) play an important role in reflecting improvement in engineering behavior achieved by lime treatment.

Characteristics of expansive soils improved with cement and fly ash in Northern Thailand

  • Voottipruex, Panich;Jamsawang, Pitthaya
    • Geomechanics and Engineering
    • /
    • v.6 no.5
    • /
    • pp.437-453
    • /
    • 2014
  • This paper studies the swelling and strength characteristics of unimproved and improved expansive soils in terms of the swell potential, swelling pressure, rate of secondary swelling, unconfined compressive strength and California bearing ratio (CBR). The admixtures used in this study are locally available cement and fly ash. The soils used in this study were taken from the Mae Moh power plant, Lampang Province, in northern Thailand. A conventional consolidation test apparatus was used to determine the swelling of the soil specimen. The optimum admixture contents are determined to efficiently reduce the swelling of unimproved soil. The rate of secondary swelling for unimproved soil is within the range of highly plastic montmorillonite clay, whereas the specimens improved with optimum admixture contents can be classified as non-swelling kaolinite. A soil type affects the swelling pressure. Expansive soil improvement with fly ash alone can reduce swelling percentage but cannot enhance the unconfined compressive strength and CBR. The strength and swelling characteristics can be predicted well by the swelling percentage in this study.

Determination of Shear Strength Modification Factors in Drilled Shaft (현장타설말뚝의 전단강도 조정계수 결정법)

  • Kim, Myung-Hak;Michael W. O'Neill
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.193-200
    • /
    • 1999
  • An experimental study is described in which a 305-mm-diameter instrumented drilled shaft was installed in a moderately expansive clay soil during the dry season and monitored over a period of about 18 months. The purpose of the study was In investigate the effects of seasonal moisture changes in the soil on the shear stresses imposed on the sides of the drilled shaft and movements of the shaft head. The soil in the vicinity of the test shaft was instrumented to measure suction and ground surface movement and the relation between suction, total stress and shear strength of the soil at the test site was determined through laboratory triaxial compression testing. Daily rainfall and temperatures were also monitored at the test site, the National Geotechnical Experimentation Site at the University of Houston, where control on surface grading and vegetation existed. Over the course of the study induced unit side shear values of up to 54 kPa were measured in the test shaft. A simple computational model was developed that related observed suction changes to unit side shear induced by the expansion of the soil through the use of the laboratory suction-total stress-shear strength relation.

  • PDF

Engineering properties of expansive clayey soil stabilized with lime and perlite

  • Calik, Umit;Sadoglu, Erol
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.403-418
    • /
    • 2014
  • There are around 6700 millions tons of perlite reserves in the world. Although perlite possesses pozzolanic properties, it has not been so far used in soil stabilization. In this study, stabilization with perlite and lime of an expansive clayey soil containing smectite group clay minerals such as montmorillonite and nontronite was investigated experimentally. For this purpose, test mixtures were prepared with 8% of lime (optimum lime ratio of the soil) and without lime by adding 0%, 10%, 20%, 30%, 40% and 50% of perlite. Geotechnical properties such as compaction, Atterberg limits, swelling, unconfined compressive strength of the mixtures and changes of these properties depending on perlite ratio and time were determined. The test results show that stabilization of the soil with combination of perlite and lime improves the geotechnical properties better than those of perlite or lime alone. This experimental study unveils that the mixture containing 30% perlite and 8% lime is the optimum solution in stabilization of the soil with respect to strength.

A new method to predict swelling pressure of compacted bentonites based on diffuse double layer theory

  • Sun, Haiquan
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.71-83
    • /
    • 2018
  • Compacted bentonites were chosen as the backfill material and buffer in high level nuclear waste disposal due to its high swelling pressure, high ion adsorption capacity and low permeability. It is essential to estimate the swelling pressure in design and considering the safety of the nuclear repositories. The swelling pressure model of expansive clay colloids was developed based on Gouy-Chapman diffuse double layer theory. However, the diffuse double layer model is effective in predicting low compaction dry density (low swelling pressure) for certain bentonites, and invalidation in simulating high compaction dry density (high swelling pressure). In this paper, the new relationship between nondimensional midplane potential function, u, and nondimensional distance function, Kd, were established based on the Gouy-Chapman theory by considering the variation of void ratio. The new developed model was constructed based on the published literature data of compacted Na-bentonite (MX80) and Ca-bentonite (FoCa) for sodium and calcium bentonite respectively. The proposed models were applied to re-compute swelling pressure of other compacted Na-bentonites (Kunigel-V1, Voclay, Neokunibond and GMZ) and Ca-bentonites (FEBEX, Bavaria bentonite, Bentonite S-2, Montigel bentonite) based on the reported experimental data. Results show that the predicted swelling pressure has a good agreement with the experimental swelling pressure in all cases.

Soil stabilization of clay with lignin, rice husk powder and ash

  • Canakci, Hanifi;Aziz, Aram;Celik, Fatih
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.67-79
    • /
    • 2015
  • This article presents the result of laboratory study conducted on expansive soil specimens treated with lignin, rice husk powder (RHP) and rice husk ash (RHA). The amount of lignin produced from paper industry and RHP were varied from 0 to 20% and RHA from 0 to 10% by weight. The treated specimens were subjected to unconfined compressive strength (UCS),swelling test and Atterberg limit tests. The effect of additives on UCS and atterberg limit test results were reported. It was observed that the additives and curing duration had a significant effect on the strength value of treated specimens. Generally (except the sample treated with 20% RHP for 3-day) with increasing additive and curing duration the UCS value increases. A RHP content of 15% was found to be the optimum with regard to 3-day cure UCS.

Suitability of bagasse ash-lime mixture for the stabilization of black cotton soil

  • Ramesh, H.N.;Kulkarni, Madhavi Gopal Rao;Raghunandan, Mavinakere Eshwaraiah;Nethravathi, S.
    • Geomechanics and Engineering
    • /
    • v.28 no.3
    • /
    • pp.255-263
    • /
    • 2022
  • Lime stabilization has conventionally been listed amid the key techniques of chemical stabilization. Replacing lime with sustainable agro-based by-products have gained prominence in recent decades. Bagasse ash (BA) is one such potential alternatives, an industrial waste with abundance in production, and industries exploring sustainable solutions for its safe disposal. Supplementing BA with lime could be an ideal approach to reduce lime consumption. However, suitability of BA and lime for the stabilization of expansive clays, such as black cotton (BC) soil is yet to be explored. This paper therefore aims to investigate the suitability of BA-lime mixtures to stabilize BC soil with emphasis to compaction behaviors and unconfined compressive strength (UCS) using standard laboratory procedures. Suitability of BA-lime mixture is then assessed against addition of calcium sulphate which, from previous experience, is detrimental with lime stabilization. Experimental outcomes nominate 15% BA as the optimum value observed from both compaction and UCS data, while addition of 4% lime to 15% BA showed the best results. Mineralogical and microstructural analysis show the presence of cementitious compounds with addition of lime and calcium sulphate with curing periods. While, formation of Ettringite needles were noted with the addition of calcium sulphate in BA-lime mixtures (at optimum values) after 90-day curing, and UCS results showed a decrease at this point. To this end, addition of BA in lime stabilization showed encouraging results as assessed from the compaction and UCS results. Nonetheless usage of calcium salts, with utmost emphasis on calcium sulphate and equivalent should be avoided.