• Title/Summary/Keyword: Expansion Factor

Search Result 843, Processing Time 0.022 seconds

A Study on the Flow Loss for Sudden Expansion and Contraction Part of Circular Pipe Nozzle (원형단면 노즐의 급확대 축소부를 통한 유동손실에 대한 연구)

  • 고영하
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.89-95
    • /
    • 2000
  • To obtain an exact flow loss in piping systems is very important in the face of efficiency anticipation and work control of plant. The object of this study is to get the flow loss through the experiment for sudden expansion and contraction part of circular pipe nozzle. The experiment in this study is performed after getting the flow loss factor for sudden expansion and contraction through preliminary experiments. It is confirmed that the results of this study agreed with the approximated equation of Ikeda and Matsuo. It is proved that flow loss factor ${\zeta}_3$for sudden expansion and contraction part of circular pipe is dependent on $L/D_1$in these experimental conditions.

  • PDF

Bootstrap Evaluation of Stem Density and Biomass Expansion Factors in Pinus rigida Stands in Korea (부트스트랩 시뮬레이션을 이용한 리기다소나무림의 줄기밀도와 바이오매스 확장계수 평가)

  • Seo, Yeon Ok;Lee, Young Jin;Pyo, Jung Kee;Kim, Rae Hyun;Son, Yeong Son;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.4
    • /
    • pp.535-539
    • /
    • 2011
  • This study was conducted to examine the bootstrap evaluation of the stem density and biomass expansion factor for Pinus rigida plantations in Korea. The stem density ($g/cm^3$) in less than 20 tree years were 0.460 while more than 21 tree years were 0.456 respectively. Biomass expansion factor of less than 20 years and more than 21 years were 2.013, 1.171, respectively. The results of 100 and 500 bootstrap iterations, stem density ($g/cm^3$) in less than 20 years were 0.456~0.462 while more than 21 years were 0.457~0.456 respectively. Biomass expansion factor of less than 20 years and more than 21 years were 1.990~2.039, 1.173~1.170, respectively. The mean differences between observed biomass factor and average parameter estimates showed within 5 percent differences. The split datasets of younger stands and old stands were compared to the results of bootstrap simulations. The stem density in less than 20 years of mean difference were 0.441~1.049% while more than 21years were 0.123~0.206% respectively. Biomass expansion factor in less than 20 years and more than 21 years were -1.102~1.340%, -0.024~0.215% respectively. Younger stand had relatively higher errors compared to the old stand. The results of stem density and biomass expansion factor using the bootstrap simulation method indicated approximately 1.1% and 1.4%, respectively.

Economic Evaluation of Transmission Expansion for Investment Incentives in a Competitive Electricity Market

  • Fischer, Robert;Joo, Sung-Kwan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.627-638
    • /
    • 2008
  • With the shift of the electric power industry from a regulated monopoly structure to a competitive market environment, the focus of the transmission expansion planning has been moving from reliability-driven transmission expansion to market-based transmission expansion. In market-based transmission expansion, however, a growing demand for electricity, an increasing number of transmission bottlenecks, and the falling levels of transmission investment have created the need for an incentive to motivate investors. The expectation of profit serves as a motivational factor for market participants to invest in transmission expansion in a competitive market. To promote investment in transmission expansion, there is an increasing need for a systematic method to examine transmission expansion for investment incentives from multiple perspectives. In this paper, the transmission expansion problem in a competitive market environment is formulated from ISO and investors' perspectives. The proposed method uses parametric analysis to analyze benefits for investors to identify the most profitable location and amount for transmission addition. Numerical results are presented to demonstrate the effectiveness of the proposed method.

The effects of market orientation, CEO capacity and environmental characteristics of companies expanding to overseas markets on their performance (국내 해외진출 기업의 시장지향성과 최고경영자역량 및 해외시장 환경특성이 해외진출성과에 미치는 영향)

  • Min-Ju Kim;Jin-Ho Oh;Keun-Sik Park
    • Korea Trade Review
    • /
    • v.45 no.5
    • /
    • pp.303-324
    • /
    • 2020
  • The objective of this study is to verify the effect of the market orientation, CEO capacity, and environmental characteristics of overseas markets on the performance of overseas expansion among the success factors of domestic overseas expansion companies. For this purpose, employees of domestic overseas companies based in the Seoul metropolitan area were surveyed, and the hypothesis test was conducted. As a result of the verification, among the contributors to overseas advancement of domestic overseas companies, the factors of CEO capacity, overseas business_education ability, market environment and market size have a significant positive effect on the financial performance of overseas expansion. However, market-oriented factors were found to have no significant effect on the financial performance of overseas expansion. Among the contributors to overseas advancement of domestic overseas companies, the market-oriented factor, the customer-oriented factor, has a significant positive effect on the non-financial performance of overseas expansion. However, factors in CEO competency and environmental characteristics in overseas markets do not have a significant positive effect on the non-financial performance of overseas expansion.

The Static Behavior of Bridge Expansion Joints Due to the Wheel Load (윤하중 재하에 의한 교량 신축이음의 정적거동)

  • Kim, Youngjin;Kwak, Imjong;Cho, Changbaek;Yoon, Hyejin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3A
    • /
    • pp.357-366
    • /
    • 2008
  • This study addresses the analysis of the behavioral characteristics of bridge expansion joints under wheel loading through wheel load test and the proposal of relevant wheel load specifications for expansion joints. To that goal, specimens of rail and finger expansion joints that are widely used in Korea were fabricated and subjected to static wheel load test using a real tire wheel. The wheel load distribution factor in the rail and finger expansion joints in contact with the wheel load was evaluated. The evaluation revealed that the portion of load sustained by the central rail of rail expansion joint was decreasing with larger wheel load, and that the portion of load sustained by the finger expansion joint was practically insensitive to the increase of the contact area and remained nearly constant. Since the wheel load characteristics showed large difference compared to former design specifications, it appears necessary to prepare rational specifications relative to the distribution of the wheel load contact pressure for the design of expansion joints.

Uncertainty Analysis of Stem Density and Biomass Expansion Factor for Pinus rigida in Korea (리기다소나무림의 줄기밀도와 바이오매스 확장계수에 대한 불확실성 평가)

  • Seo, Yeon Ok;Lee, Young Jin;Pyo, Jung Kee;Kim, Rae Hyun;Son, Yeong Mo;Lee, Kyeong Hak
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.2
    • /
    • pp.149-153
    • /
    • 2011
  • This study was conducted to examine the uncertainty analysis of the stem density and biomass expansion factor for Pinus rigida in Korea. A total of 57 representative sample trees were harvested. The age class in Pinus rigida forests was divided into two, which were stands with less than 20 years and more than 21 years. The influence of stand ages on biomass expansion factor showed that it was statistically significant (p=0.0001), but it was not significant on stem density (p=0.8070). The results of this study based on the uncertainty evaluation method which were suggested by IPCC guide line indicated that stem density of the stand with less than 20 years were 30.92%, while were 25.12% the stands with more than 21years. The uncertainty in biomass expansion factor of less than 20 years and more than 21 years were 60.32% and 22.42%, respectively. The uncertainty of less than 20 years was higher compared to those stands with more than 21 years. In the case of old stand, it showed the lowest uncertainty results but younger stands showed the highest uncertainty results. This study could be applied to our country's emission factor by using stem density and biomass expansion factors which were less than 20 years and more than 21 years for Pinus rigida in Korea.

The Finite Element Analysis of the Mandrel Shape's Influence on the Residual Stress Distribution by Cold Expansion Method (형상봉의 모양이 홀확장 잔류응력 분포에 미치는 영향에 대한 유한요소해석)

  • Jang, Jae-Soon;Cho, Myoung-Rae;Yang, Won-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.127-133
    • /
    • 2006
  • Cold expansion method is used to protect a fatigue fracture from fastener hole in the structure and aerospace industry. Cold expansion is that an oversized tapered mandrel goes through the hole and produces a compressive residual stress as well as plastic deformation around the hole. Here, mandrel shapes are one of the factors which are influenced on the residual stress distribution by cold expansion method. This paper, according to mandrel shapes (diameter of mandrel, length of mandrel and length of taper), we are performed a finite element analysis of residual stress distribution by cold expansion method. From this study, it has been found that diameter of mandrel and length of taper are an important factor which was generated a low compressive residual stress surround of fastener hole by cold expansion method.

A Case Study on the Effect of Damaged Expansion Joint for Safety Assessment of Highway Bridges

  • Kim, Kwang-Il;Chai, Won-Kyu;Lee, Myeong-Gu;Son, Young-Hyun
    • International Journal of Safety
    • /
    • v.9 no.2
    • /
    • pp.16-21
    • /
    • 2010
  • In this study, the variations of transformed impact factors and load carrying capacity of highway bridges measured from the state of expansion joint are evaluated. the field loading tests were performed on the highway bridge with damaged expansion joint to investigate the variation of the load carrying capacity. From the field loading tests in case that damaged expansion joint exist or do not exist, the static displacements and dynamic displacements were measured, and TIF were calculated, respectively. dynamic test is performed in order to estimate dynamic displacement and TIF according to the level of damage of expansion joint. From the results of TIF, the load carrying capacity of highway bridges with damaged expansion joint were estimated.

A Study for Lifetime Predition of Expansion Joint Using HILS (HILS 기법을 적용한 신축관 이음 수명예측에 관한 연구)

  • Oh, Jung-Soo;Cho, Sueng-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.138-142
    • /
    • 2018
  • This study used HILS to test an expansion joint, which is vulnerable to the water hammer effect. The operation data for the HIL simulator was the length rate of the expansion joint by the water hammer, which was used for life prediction based on the vibration durability. For the vibration durability test, the internal pressure of the expansion joint was assumed to be a factor of the durability life, and the lifetime prediction model equation was obtained by curve fitting the lifetime data at each pressure. During the test, the major failure modes of crack and water leakage occurred on the surface of the bellows part. The lifetime prediction model typically follows an inverse power law model. The pressure is a stress factor, and the model is effective in only a specific environment. Therefore, another stress factor such as temperature will be added and considered for a mixed lifetime prediction model in the future.

Influence of Thermal Expansion on Eccentricity and Critical Speed in Dry Submersible Induction Motors

  • Lv, Qiang;Bao, Xiaohua;He, Yigang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.106-113
    • /
    • 2014
  • Rotor eccentricity is one of the major factors that directly influence the security of horizontal electrical machines, and the critical speed of the shaft has a close relationship with vibration. This paper deals with the influence of thermal expansion on the rotor eccentricity and critical speed in large dry submersible motors. The dynamic eccentricity (where the rotor is still turning around the stator bore centre but not its own centre) and critical speed of a three-phase squirrel-cage submersible induction motor are calculated via hybrid analytical/finite element method. Then the influence of thermal expansion is investigated by simulation. It is predicted from the study that the thermal expansion of the rotor and stator gives rise to a significant air-gap length decrement and an inconspicuous slower critical speed. The results show that the thermal expansion should be considered as an impact factor when designing the air gap length.