The purpose of this paper is to provide information on planting construction for healthy plant growth. To achieve this purpose, this study analyzed the planting type, planting density, withering rate, soil characteristics, and cambium electrical resistance (CER) of withered trees in an apartment complex with a high withering rate. The major plant groups examined consisted of native broad-leaved tree species (39.3%), native narrow-leaved tree species (24.2%), and native broad-leaved - exotic narrow-leaved tree species (16.4%). The planting density of the green area, where trees were planted from 0.0 to 0.3 trees per unit area, was measured as 98.4%. Withered trees were found in 19 of the 20 planted species, and the withering rate was 41.8% (610 withered/1,461 planted). Withering rates for tree species were measured as follows: Sophora japonica and Salix babylonica (100.0%), Magmolia denudata (84.3%), Lindera obtusiloba (74.7%), cornus kousa (69.3%), acer triflorum (69.2%), diospyros kaki (66.7%), Prunus yedoensis (62.8%), Acer palmatum (52.6%), Prunus armeniaca (51.1%), Chaenomeles sinensis (43.7%), Ginkgo biloba (40.9%), Zelkova serrata (31.0%), Cornus officinalis (28.6%), Taxus cuspidata (25.6%), Pinus densiflora (21.4%), Pinus parviflora (15.2%), Pinus strobus (14.6%), and Abies holophylla (10.3%). Soil chemical analyses for 18 samples revealed that as the withering rate increased, the following occurred: (a) the ratio of silt and clay in soil increased; (b) the soil pH, organic matter rate, nitrogen, available phosphorus, and cation exchange capacity (CEC) in samples were graded as "inadequate," based on the plant grading evaluation; and (c) the NaCl and cation exchange capacity were evaluated as "somewhat satisfactory." The measurement of CER for withering rate shows electrical resistance for higher withering rate are higher, which could predict that a tree will not grow well.