• Title/Summary/Keyword: Exosome

Search Result 50, Processing Time 0.029 seconds

Extracellular vesicles as novel carriers for therapeutic molecules

  • Yim, Nambin;Choi, Chulhee
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.585-586
    • /
    • 2016
  • Extracellular vesicles (EVs) are natural carriers of biomolecules that play central roles in cell-to-cell communications. Based on this, there have been various attempts to use EVs as therapeutic drug carriers. From chemical reagents to nucleic acids, various macromolecules were successfully loaded into EVs; however, loading of proteins with high molecular weight has been huddled with several problems. Purification of recombinant proteins is expensive and time consuming, and easily results in modification of proteins due to physical or chemical forces. Also, the loading efficiency of conventional methods is too low for most proteins. We have recently proposed a new method, the so-called exosomes for protein loading via optically reversible protein-protein interaction (EXPLORs), to overcome the limitations. Since EXPLORs are produced by actively loading of intracellular proteins into EVs using blue light without protein purification steps, we demonstrated that the EXPLOR technique significantly improves the loading and delivery efficiency of therapeutic proteins. In further in vitro and in vivo experiments, we demonstrate the potential of EXPLOR technology as a novel platform for biopharmaceuticals, by successful delivery of several functional proteins such as Cre recombinase, into the target cells.

Extracellular vesicles as emerging intercellular communicasomes

  • Yoon, Yae Jin;Kim, Oh Youn;Gho, Yong Song
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.531-539
    • /
    • 2014
  • All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions.

Proteomic Analysis on Exosomes Derived from Patients, Sera Infected with Echinococcus granulosus

  • Wang, Wen;Zhou, Xiaojing;Cui, Fang;Shi, Chunli;Wang, Yulan;Men, Yanfei;Zhao, Wei;Zhao, Jiaqing
    • Parasites, Hosts and Diseases
    • /
    • v.57 no.5
    • /
    • pp.489-497
    • /
    • 2019
  • Cystic echinococcosis (CE), a zoonotic disease caused by Echinococcus granulosus at the larval stage, predominantly develops in the liver and lungs of intermediate hosts and eventually results in organ malfunction or even death. The interaction between E. granulosus and human body is incompletely understood. Exosomes are nanosized particles ubiquitously present in human body fluids. Exosomes carry biomolecules that facilitate communication between cells. To the best of our knowledge, the role of exosomes in patients with CE is not reported. Here, we isolated exosomes from the sera of patients with CE (CE-exo) and healthy donors and subjected them to liquid chromatography-tandem mass spectrometry analysis. Proteomic analysis identified 49 proteins specifically expressed in CE-exo, including 4 proteins of parasitic origin. The most valuable parasitic proteins included tubulin alpha-1C chain and histone H4. And 8 proteins were differentially regulated in CE-exo (fold change>1.5), as analyzed with bioinformatic methods such as annotation and functional enrichment analyses. These findings may improve our understanding about the interaction between E. granulosus and human body, and may contribute to the diagnosis and prevention of CE.

The Role of Extracellular Vesicles in Senescence

  • Oh, Chaehwan;Koh, Dahyeon;Jeon, Hyeong Bin;Kim, Kyoung Mi
    • Molecules and Cells
    • /
    • v.45 no.9
    • /
    • pp.603-609
    • /
    • 2022
  • Cells can communicate in a variety of ways, such as by contacting each other or by secreting certain factors. Recently, extracellular vesicles (EVs) have been proposed to be mediators of cell communication. EVs are small vesicles with a lipid bilayer membrane that are secreted by cells and contain DNA, RNAs, lipids, and proteins. These EVs are secreted from various cell types and can migrate and be internalized by recipient cells that are the same or different than those that secrete them. EVs harboring various components are involved in regulating gene expression in recipient cells. These EVs may also play important roles in the senescence of cells and the accumulation of senescent cells in the body. Studies on the function of EVs in senescent cells and the mechanisms through which nonsenescent and senescent cells communicate through EVs are being actively conducted. Here, we summarize studies suggesting that EVs secreted from senescent cells can promote the senescence of other cells and that EVs secreted from nonsenescent cells can rejuvenate senescent cells. In addition, we discuss the functional components (proteins, RNAs, and other molecules) enclosed in EVs that enter recipient cells.

The bio-complex "reaction pattern in vertebrate cells" reduces cytokine-induced cellular adhesion molecule mRNA expression in human endothelial cells by attenuation of NF-kappaB translocation

  • Ronnau, Cindy;Liebermann, Herbert E. H.;Helbig, Franz;Staudt, Alexander;Felix, Stephan B.;Ewert, Ralf;Landsberger, Martin
    • BMB Reports
    • /
    • v.42 no.2
    • /
    • pp.106-112
    • /
    • 2009
  • The bio-complex "reaction pattern in vertebrate cells"(RiV) is mainly represented by characteristic exosome-like particles - probably as reaction products of cells to specific stress. The transcription factor NF-kappaB plays a central role in inflammation. We tested the hypothesis that RiV particle preparations (RiV-PP) reduce cellular adhesion molecule (CAM) expression (ICAM-1, VCAM-1, E-selectin) by the attenuation of NF-kappaB translocation in human umbilical vein endothelial cells (HUVEC). After 4 hours, pre-incubation of HUVEC with RiV-PP before stimulation with TNF-alpha significantly reduced ICAM-1 (65.5${\pm}$10.3%) and VCAM-1 (71.1${\pm}$12.3%) mRNA expression compared to TNF-alpha-treated cells (100%, n=7). ICAM-1 surface expression was significantly albeit marginally reduced in RiV/TNF-alpha- treated cells (92.0${\pm}$5.6%, n=4). No significant effect was observed on VCAM-1 surface expression. In RiV/TNF-alpha-treated cells (n=4), NF-kappaB subunits p50 (85.7${\pm}$4.1%) and p65 (85.0${\pm}$1.8%) nuclear translocation was significantly reduced. RiV-PP may exert an anti-inflammatory effect in HUVEC by reducing CAM mRNA expression via attenuation of p50 and p65 translocation.

Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells

  • Kang, In Sook;Suh, Joowon;Lee, Mi-Ni;Lee, Chaeyoung;Jin, Jing;Lee, Changjin;Yang, Young Il;Jang, Yangsoo;Oh, Goo Taeg
    • BMB Reports
    • /
    • v.53 no.2
    • /
    • pp.118-123
    • /
    • 2020
  • Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kitnegative, CD105positive phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90lowc-kitnegativeCD105positive CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair.

Macrophage-secreted Exosomes Delivering miRNA-21 Inhibitor can Regulate BGC-823 Cell Proliferation

  • Wang, Jian-Jun;Wang, Ze-You;Chen, Rui;Xiong, Jing;Yao, Yong-Liang;Wu, Jian-Hong;Li, Guang-Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4203-4209
    • /
    • 2015
  • Exosomes, membranous nanovesicles, naturally carry bio-macromolecules or miRNA and play impoetant roles in tumor pathogenesis. Here, we showed that macrophages cell-derived exosomes can function as vehicles to deliver exogenous miR-21 inhibitor into BGC-823 gastric cancer cells. Exosomes loaded with miR-21inhibitor significantly increased miR-21 levels in BGC-823, but miR-21inhibitor loaded in exosomes exerted an opposite effect. miRNA transfected with exosomes had less cellular toxicity to host cells compared to conventional transfection methods. The miR-21inhibitor loaded exosomes promoted the migration ability and reduced apoptosis of BGC-823 gastric cancer cells. These observations indicate that miR-21 acts as a tumor promoter by targeting the PDCD4 gene and preventing apoptosis of gastric cancer cells through inhibition of PDCD4 expression. Furthermore, exosome -mediated miR-21 inhibitor delivery resulted in functionally more efficient inhibition and less cellular toxicity compared to conventional transfection methods. Similar approaches could be useful in modification of target biomolecules in vitro and in vivo. These findings contribute to our understanding of the functions of miR-21 and exosomes as a carrier for therapy of gastric cancer.

Exosomes from CIITA-Transfected CT26 Cells Enhance Anti-tumor Effects

  • Fan, Wen;Tian, Xing-De;Huang, E.;Zhang, Jia-Jun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.2
    • /
    • pp.987-991
    • /
    • 2013
  • Aim: To study anti-tumor effects of exosomes from class II transactivator (CIITA) gene transfected CT26 cells. Methods: In this study, we established an MHC class II molecule-expressing murine colon cancer cell line (CT26-CIITA) by transduction of the CIITA gene. Immune effects in vitro and tumor protective results in vivo were tested and monitored. Results: Exosomes from CT26-CIITA cells were found to contain a high level of MHC class II protein. When loaded on dendritic cells (DCs), exosomes from CT26-CIITA cells significantly increased expression of MHC class II molecules, CD86 and CD80, as compared to exosomes from CT26 cells. In vitro assays using co-culture of immunized splenocytes and exosome-loaded DCs demonstrated that CIITA-Exo enhanced splenocyte proliferation and IFN-${\gamma}$ production of CD4+T cells, while inhibiting IL-10 secretion. In addition, compared to exosomes from CT26 cells, CT26-CIITA-derived exosomes induced higher TNF-${\alpha}$ and IL-12 mRNA levels. A mouse tumour preventive model showed that CT26-CIITA derived exosomes significantly inhibited tumour growth in a dose-dependent manner and significantly prolonged the survival time of tumour-bearing mice. Conclusion: Our findings indicate that CT26-CIITA-released exosomes are more efficient to induce anti-tumour immune responses, suggesting a potential role of MHC class II-containing tumour exosomes as cancer vaccine candidates.

Immunogenicity of Exosomes from Dendritic Cells Stimulated with Toxoplasma gondii Lysates in Ocularly Immunized Mice

  • Jung, Bong-Kwang;Kim, Eun-Do;Song, Hyemi;Chai, Jong-Yil;Seo, Kyoung Yul
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.2
    • /
    • pp.185-189
    • /
    • 2020
  • Immunogenicity of dendritic cell-derived exosomes stimulated with Toxoplasma gondii lysates (TLA exo), mixed with cholera toxin as an adjuvant, was investigated in mice immunized via 2 mucosal routes (ocular vs intranasal). BALB/c mice were injected 3 times with TLA exo vaccine at 2 week interval, and the levels of IgG in serum and IgA in tear, saliva, feces, and vaginal wash were measured. To observe the expression of T. gondii-specific B1 gene, mice infected with ME49 T. gondii cysts were immunized with TLA exo or PBS exo (not stimulated with TLA), and their brain tissues were examined. The mice vaccinated via intranasal route elicited significantly higher humoral and mucosal immune responses compared with mice treated with PBS alone. Also, mice immunized via ocular route (by eyedrop) induced significantly higher T. gondii-specific IgG in serum and IgA in tear and feces in comparison with PBS controls. B1 gene expression was significantly lower in TLA exo vaccinated mice than in PBS or PBS exo vaccinated mice. These results demonstrated that ocular immunization of mice with TLA exo vaccine has the potential to stimulate systemic or local antibody responses. This study also highlighted an advantage of an eyedrop vaccine as an alternative for T. gondii intranasal vaccines.

Differential Expression Profiling of Salivary Exosomal microRNAs in a Single Case of Periodontitis - A Pilot Study

  • Park, Sung Nam;Son, Young Woo;Choi, Eun Joo;You, Hyung-Keun;Kim, Min Seuk
    • International Journal of Oral Biology
    • /
    • v.43 no.4
    • /
    • pp.223-230
    • /
    • 2018
  • Exosomes are Nano-sized lipid vesicles secreted from mammalian cells containing diverse cellular materials such as proteins, lipids, and nucleotides. Multiple lines of evidence indicate that in saliva, exosomes and their contents such as microRNAs (miRNAs) mediate numerous cellular responses upon delivery to recipient cells. The objective of this study was to characterize the different expression profile of exosomal miRNAs in saliva samples, periodically isolated from a single periodontitis patient. Unstimulated saliva was collected from a single patient over time periods for managing periodontitis. MicroRNAs extracted from each phase were investigated for the expression of exosomal miRNAs. Salivary exosomal miRNAs were analyzed using Affymetrix miRNA arrays and prediction of target genes and pathways for its different expression performed using DIANA-mirPath, a web-based, computational tool. Following the delivery of miRNA mimics (hsa-miR-4487, -4532, and -7108-5p) into human gingival fibroblasts, the expression of pro-inflammatory cytokines and activation of the MAPK pathway were evaluated through RT-PCR and western blotting. In each phase, 13 and 43 miRNAs were found to be differently expressed $({\mid}FC{\mid}{\geq}2)$. Among these, hsa-miR-4487 $({\mid}FC{\mid}=9.292005)$ and has-miR-4532 $({\mid}FC{\mid}=18.322697)$ were highly up-regulated in the clinically severe phase, whereas hsa-miR-7108-5p $({\mid}FC{\mid}=12.20601)$ was strongly up-regulated in the clinically mild phase. In addition, the overexpression of miRNA mimics in human gingival fibroblasts resulted in a significant induction of IL-6 mRNA expression and p38 phosphorylation. The findings of this study established alterations in salivary exosomal miRNAs which are dependent on the severity of periodontitis and may act as potential candidates for the treatment of oral inflammatory diseases.