• Title/Summary/Keyword: Exoskeletal

Search Result 14, Processing Time 0.032 seconds

Design and Control of a Novel Tendon-driven Exoskeletal Power Assistive Device (새로운 와이어 구동방식 외골격 보조기의 설계 및 제어)

  • Kong Kyoung-chul;Jeon Doyoung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.11
    • /
    • pp.936-942
    • /
    • 2005
  • Recently the exoskeletal power assistive equipment which is a kind of wearable robot has been widely developed to help the human body motion. For the elderly people and patients, however, some limits exist due to the weight and volume of the equipments. As a feasible solution, a tendon-driven exoskeletal power assistive device fur the lower body, and caster walker are proposed in this research. Since the caster walker carries the heavy items, the weight and volume of the wearable exoskeleton are minimized. The key control is used to generate the joint torque required to assist motions such as sitting, standing and walking. Experiments were performed for several motions and the EMG sensors were used to measure the magnitude of assistance. When the motion of sitting down and standing up was compared with and without wearing the proposed device, the $25\%$ assistance was acquired.

Application of Multiple Fuzzy-Neuro Controllers of an Exoskeletal Robot for Human Elbow Motion Support

  • Kiguchi, Kazuo;Kariya, Shingo;Wantanabe, Keigo;Fukude, Toshio
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2002
  • A decrease in the birthrate and aging are progressing in Japan and several countries. In that society, it is important that physically weak persons such as elderly persons are able to take care of themselves. We have been developing exoskeletal robots for human (especially for physically weak persons) motion support. In this study, the controller controls the angular position and impedance of the exoskeltal robot system using multiple fuzzy-neuro controllers based on biological signals that reflect the human subject's intention. Skin surface electromyogram (EMG) signals and the generated wrist force by the human subject during the elbow motion have been used as input information of the controller. Since the activation level of working muscles tends to vary in accordance with the flexion angle of elbow, multiple fuzzy-neuro controllers are applied in the proposed method. The multiple fuzzy-neuro controllers are moderately switched in accordance with the elbow flexion angle. Because of the adaptation ability of the fuzzy-neuro controllers, the exoskeletal robot is flexible enough to deal with biological signal such as EMG. The experimental results show the effectiveness of the proposed controller.

A Study on the Walking Recognition Method of Assistance Robot Legs Using EEG and EMG Signals

  • Shin, Dae Seob
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.269-274
    • /
    • 2020
  • This paper is to study the exoskeleton robot for the walking of the elderly and the disabled. We developed and tested an Exoskeletal robot with two axes of freedom for joint motion. The EEG and EMG signals were used to move the joints of the Exoskeletal robot. By analyzing the EMG signal, the control signal was extracted and applied to the robot to facilitate the walking operation of the walking assistance robot. In addition, the brain-computer interface technology is applied to perform the operation of the robot using brain waves, spontaneous electrical activities recorded on the human scalp. These two signals were fused to study the walking recognition method of the supporting robot leg.

Intent signal generation of the exoskeletal robotics for construction workers and verification of its feasibility (건설작업자의 근력지원을 위한 외골격 모듈의 동작의지신호 생성 및 타당성 검증)

  • Lee, Seung-Hoon;Yu, Seung-Nam;Lee, Hee-Don;Jang, Jae-Ho;Han, Chang-Soo;Han, Jung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1603-1608
    • /
    • 2008
  • Powered robotic exoskeletons are currently under development for assisting or supporting human muscle power. Many applications using this system for the purpose of national defense system, medical support, and construction industry are now frequently introduced. In this paper, we proposed the exoskeletal wearable robotics for construction workers. First, we analyzed general work conditions at the construction site and set up target tasks through the datum. Then dominant muscles’ activity which is related with the defined target tasks was checked up. Herein, wearers’ intent signal generation methodology was introduced in order to effectively activate the proposed system. In the final part of this paper, we evaluated the capability and feasibility of the exoskeletal robotics by the electromyography (EMG) signal variance; demonstrated that robotic exoskeletons controlled by muscle activity could be useful way of assisting with construction workers.

  • PDF

Hand Exoskeleton with PWM Driving Method (초음파 모터 구동방식의 역감제시 기구)

  • Choe, Byeong-Hyeon;Choe, Hyeok-Ryeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.6
    • /
    • pp.938-948
    • /
    • 2001
  • In this paper, we present an exoskeletal haptic device named SKK Hand Master. This device is directly driven linkages actuated with small ultrasonic motors. By adopting ultrasonic motors that have advantageous features useful for cybernetic actuators, a compact haptic device containing whole driving packages can be established without additional power transmissions such as tendons. Methods for measuring joint postures and joint torques are developed and a new control strategy called PWM/PS is proposed to overcome intrinsic disadvantages such as hysteresis. Issues regarding design and construction of the device are addressed and several results of experiments for the evaluations of performance are included.

Exo-Skeletal Flexible Structure for Communal Touch Device (공용 터치 장치를 위한 외골격 유연 구조)

  • Jeong, Jae-Yun;Lee, EunJi;Park, Hyeongryool;Chu, Won-Shik
    • Journal of Appropriate Technology
    • /
    • v.6 no.2
    • /
    • pp.219-225
    • /
    • 2020
  • Importance of touch equipment and smart learning increases and public institutions and educational facilities are applying smart devices to their daily environments. However, users of public smart devices are at risk of being exposed to the direct and indirect spread of infectious diseases. This study develops an exo-finger that wraps the fingertips of smart device users and is intended to have a disease prevention effect when used on public equipment. An exoskeletal body was fabricated by inserting a secondary material which is a mixture of the activating material, carbon black (CB) and a macromolecular polymer (elastomer) into a mold. This device was confirmed to have a touch function when the CB content was 0.030 wt% or higher, and the content of the elastomer was varied so that it could have a friction force similar to that when a person touches a smart device (a friction coefficient of 2.5). Through experiments, it was concluded that the CB content had little effect on the friction coefficient. As a result of testing the completed prototype on a smart device, it was proven that the developed exoskeletal device can be useful in situations where it is impossible to touch due to wearing protective gears, or when equipment such as gloves is used to prevent the spread of infectious diseases.

Hydraulic Exoskeletal Robot for Assisting Muscle Power (유압식 근력지원 외골격 로봇 개발)

  • Jang, Jae-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.485-487
    • /
    • 2011
  • 본 논문에서는 인간의 근력을 보조 또는 증폭시켜 줄 수 있는 유압 구동식 외골격 로봇을 개발하였다. 인간 신체 데이터와 보행 분석 데이터를 기반으로 로봇의 외골격을 설계 하였으며, 이를 구동하기 위한 알고리즘, 제어기 H/W 등을 개발하였다. 근력지원 외골격 로봇을 설계 제작하여, 실제 실험을 통해 설계, 제어 등 로봇의 현장 적용 가능성 등을 판단할 수 있는 플랫폼을 가질 수 있었다.

  • PDF