• Title/Summary/Keyword: Exogenous Genes

Search Result 147, Processing Time 0.033 seconds

Molecular characterization of BrRZFPs genes encoding C3HC4 type RING zinc finger protein under abiotic stress from Chinese cabbage (Brassica rapa L.)

  • Jung, Yu Jin;Lee, Kye Dong;Cho, Yong Gu;Nou, Ill Sup;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.40 no.2
    • /
    • pp.102-110
    • /
    • 2013
  • The novel BrRZFPs genes encoding C3HC4-type RING zinc finger protein were identified from FOX (full length cDNA over-expressing) library of Brassica rapa. Ten full-length cDNAs obtained from the library encode zinc-finger protein containing 346 amino acids, designated BrRZFPs. These genes were classified into four groups by phylogenic analysis showing conserved protein sequences at both termini. The tissue distribution of BrRZFPs transcription was examined by qRT-PCR revealing ubiquitous expression pattern. However, each gene was strongly expressed in the specific tissue. Transcriptional analysis showed that those acquired 10 genes were inducible under abiotic stresses. Likewise, the transcript of BrRZFP3 was strongly induced (~12-folds) by exogenous abscisic acid, whereas the transcripts of BrRZFP1, BrRZFP2 and BrRZFP3 were (> 9-folds) induced by cold. We suggest that these BrRZFPs that function as signal or response to abiotic stress are useful for crop improvement.

Genome-Wide Transcriptomic Analysis of n-Caproic Acid Production in Ruminococcaceae Bacterium CPB6 with Lactate Supplementation

  • Lu, Shaowen;Jin, Hong;Wang, Yi;Tao, Yong
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.11
    • /
    • pp.1533-1544
    • /
    • 2021
  • n-Caproic acid (CA) is gaining increased attention due to its high value as a chemical feedstock. Ruminococcaceae bacterium strain CPB6 is an anaerobic mesophilic bacterium that is highly prolific in its ability to perform chain elongation of lactate to CA. However, little is known about the genome-wide transcriptional analysis of strain CPB6 for CA production triggered by the supplementation of exogenous lactate. In this study, cultivation of strain CPB6 was carried out in the absence and presence of lactate. Transcriptional profiles were analyzed using RNA-seq, and differentially expressed genes (DEGs) between the lactate-supplemented cells and control cells without lactate were analyzed. The results showed that lactate supplementation led to earlier CA p,roduction, and higher final CA titer and productivity. 295 genes were substrate and/or growth dependent, and these genes cover crucial functional categories. Specifically, 5 genes responsible for the reverse β-oxidation pathway, 11 genes encoding ATP-binding cassette (ABC) transporters, 6 genes encoding substrate-binding protein (SBP), and 4 genes encoding phosphotransferase system (PTS) transporters were strikingly upregulated in response to the addition of lactate. These genes would be candidates for future studies aiming at understanding the regulatory mechanism of lactate conversion into CA, as well as for the improvement of CA production in strain CPB6. The findings presented herein reveal unique insights into the biomolecular effect of lactate on CA production at the transcriptional level.

Identification and Characterization of Three Differentially Expressed Ovarian Genes Associated with Ovarian Maturation in Yesso Scallop, Patinopecten yessoensis

  • Kim, Young-Ju;Kang, Hye-Eun;Cho, Gyu-Tae;Suh, Young-Sang;Yoo, Myong-Suk;Kim, Hyun-Woo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.4
    • /
    • pp.276-285
    • /
    • 2009
  • Despite great commercial interest, relatively little has been described about molecular mechanism of bivalve reproduction. We investigated genes involved in ovarian maturation of the Yesso scallop, Patinopecten yessoensis. GSI index and histological analysis revealed that maturation of ovary begin in February and spawning period is from April to June which is similar to the previous study in the East Sea. As result of combination analysis of differential display RTPCR (DDRT-PCR) and histological examination, vitellogenin (Vg), ferritin (Ft) and ADT/ATP carrier protein (ACC) were identified as differently expressed genes in maturating ovary. Endpoint RT-PCR results showed that Vg is ovary-specific genes whereas Ft and ACC are expressed ubiquitously suggesting that Vg can be good molecular markers for ovarian development and sex determination in bivalves. Quantitative PCR results revealed that Vg were expressed highest during growth stage and appears to play a major role in oocyte maturation. On the contrary, expression of Ft was highest after spawning stage, which suggests that up-regulation may be involved in spawning and inactive stages in which the scallops recover from spawning. In addition, high level of the mitochondrial gene, ACC, may play a role in energy metabolism in maturating oocytes. Isolation and molecular studies of these key genes will expand our knowledge of the physiological changes from various exogenous factors including temperature, salinity, pH, even or numerous endocrine disrupting chemicals (EDCs) during reproductive cycle. In addition, further study of these genes implicates various industrial applications including the stable seed production, increased food quality, or economic aquaculture system.

Transcriptomic Analysis of Oryza sativa Leaves Reveals Key Changes in Response to Magnaporthe oryzae MSP1

  • Meng, Qingfeng;Gupta, Ravi;Kwon, Soon Jae;Wang, Yiming;Agrawal, Ganesh Kumar;Rakwal, Randeep;Park, Sang-Ryeol;Kim, Sun Tae
    • The Plant Pathology Journal
    • /
    • v.34 no.4
    • /
    • pp.257-268
    • /
    • 2018
  • Rice blast disease, caused by Magnaporthe oryzae, results in an extensive loss of rice productivity. Previously, we identified a novel M. oryzae secreted protein, termed MSP1 which causes cell death and pathogen-associated molecular pattern (PAMP)-triggered immune (PTI) responses in rice. Here, we report the transcriptome profile of MSP1-induced response in rice, which led to the identification of 21,619 genes, among which 4,386 showed significant changes (P < 0.05 and fold change > 2 or < 1/2) in response to exogenous MSP1 treatment. Functional annotation of differentially regulated genes showed that the suppressed genes were deeply associated with photosynthesis, secondary metabolism, lipid synthesis, and protein synthesis, while the induced genes were involved in lipid degradation, protein degradation, and signaling. Moreover, expression of genes encoding receptor-like kinases, MAPKs, WRKYs, hormone signaling proteins and pathogenesis-related (PR) proteins were also induced by MSP1. Mapping these differentially expressed genes onto various pathways revealed critical information about the MSP1-triggered responses, providing new insights into the molecular mechanism and components of MSP1-triggered PTI responses in rice.

Exogenous Exposure to Estradiol Benzoate or Flutamide at the Weaning Age Alters Expression of Connexin Isoforms in the Initial Segment of Male Rat

  • Lee, Ki-Ho
    • Development and Reproduction
    • /
    • v.19 no.1
    • /
    • pp.43-51
    • /
    • 2015
  • Connexin (Cx) is a complex which allows direct communication between neighboring cells via exchange of signaling molecules and eventually leads to functional harmony of cells in a tissue. The initial segment (IS) is an excurrent duct of male reproductive tract and expression of numerous genes in the IS are controlled by androgens and estrogens. The effects of these steroid hormones on gene expression in the IS during postnatal development have not extensively examined. The present research investigated expressional modulation of Cx isoforms in the IS by exogenous exposure to estrogen agonist, estradiol benzoate (EB), or androgen antagonist, flutamide (Flu), at weaning age. Two different doses of EB or Flu were subcutaneously administrated in 21-day old of male rats, and expressional changes of Cx isoforms in the adult IS were analyzed by quantitative real-time PCR. Treatment of a low-dose EB ($0.015{\mu}g/kg$ body weight) resulted in an increased expression of Cx31 gene and a decreased expression of Cx37 gene. A high-dose EB ($1.5{\mu}g/kg$ body weight) treatment caused an increase of Cx31 gene expression. Increased levels of Cx30.3 and Cx40 transcripts were observed with a low-dose Flu ($500{\mu}g/kg$ body weight) treatment. Treatment of high-dose Flu (50 mg/kg body weight) led to expressional increases of Cx30.3, 40, and 43 genes. Our previous and present findings suggest differential responsiveness on gene expression of Cx isoforms in the IS by androgens and estrogens at different postnatal ages.

Sex- and Tissue-related Expression of Two Types of P450 Aromatase mRNA in the Protandrous Black Porgy, Acanthopagrus schlegeli, during Sex Reversal: Expression Profiles Following Exogenous Hormone Administration

  • Min, Tae-Sun;An, Kwang-Wook;Kil, Gyung-Suk;Choi, Cheol-Young
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.439-445
    • /
    • 2009
  • Cytochrome P450 aromatase (P450arom) catalyzes the conversion of androgens to estrogens and plays an important role in reproduction and development in vertebrates. We investigated the expression patterns of ovarian P450arom (P450aromA) and brain P450arom (P450aromB) mRNA during sex change in black porgy. Maturity was divided into seven stages from male to female (immature testis, mature testis, testicular portion of mostly testis, ovarian portion of mostly testis, testicular portion of mostly ovary, ovarian portion of mostly ovary, and mature ovary). P450aromA expression was significantly higher in the ovarian portion of mostly-ovarian stage fish, and P450aromB expression was highest in the brain of black porgy with mostly-ovarian gonads. Histology showed that testicular tissues were disintegrated with the development of ovarian tissue associated with an increase in the expression of the two P450arom mRNAs during sex change. Interestingly, among various tissues, P450aromA was only expressed in the ovary, and P450aromB was only expressed in the brain. To understand the role of gonadotropin-releasing hormone (GnRH) and estradiol ($E_2$), we injected exogenous hormone (GnRH analogue [GnRHa] and $E_2$) into immature black porgy. In the GnRHa group, expression of the two P450arom genes decreased 12 h after injection, and expression of the two P450arom genes were significantly higher at 6 dafter $E_2$ injection. These results provide useful baseline knowledge on the mechanism of natural sex change in black porgy.

Gene Expression Changes Associated with Sustained p16 Expression in Hepatocellular Carcinoma Cells (간암세포주에서 지속적인 p16 단백질발현이 유도하는 유전자발현의 변화)

  • Oh, Sang-Jin;Im, Ji-Young;Jung, Che-Hun;Lee, Yong-Bok
    • IMMUNE NETWORK
    • /
    • v.4 no.4
    • /
    • pp.237-243
    • /
    • 2004
  • Background: The normal functions of the cell cycle inhibitor p16INK4a are frequently inactivated in many human cancers. Over 80% of hepatocellular carcinoma (HCC) cases lack a functional p16/Rb pathway. p16/Rb pathway, as well as p53 pathway, is considered as one of key components of tumor suppression. Methods: To study the roles of p16INK4a in HCC, a stable cell line expressing exogenous p16 was generated from SNU-449 hepatocellular carcinoma cells lacking endogenous p16, and suppression subtractive hybridization (SSH) was performed in parallel with the control cells. Results: 1) SSH identifies fibronectin (FN1), crystallin ${\alpha}B$ (CRYAB), Rac1, WASP, RhoGEF, and CCT3 as differentially-expressed genes. 2) Among the selected genes, the up-regulation of FN1 and CRYAB was confirmed by Northern blot, RT-PCR and by proteomic methods. Conclusion: These genes are likely to be associated with the induction of stress fiber and stabilization of cytoskeleton. Further studies are required to clarify the possible role of p16 in the signal transduction pathway.

In Vivo Transfer of Foreign DNA into Primordial Germ Cells (PGCs) of Chicken Embryos

  • Eguma, K.;Soh, T.;Hattori, M.;Fujihara, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.4
    • /
    • pp.520-524
    • /
    • 1999
  • The present experiments were designed to examine whether exogenous DNA injected into the germinal crescent region (GCR) of early stage of developing embryos, which is considered to be the main place from which PGCs originate, can be transferred to recipient chicken embryos. In this experiment, Miw Z (DNA) dissolved in the transfection reagent (TR: Boehringer, Germany) was introduced into the GCR of donor embryos at stage 3-5 or 9-11, followed by continued incubation until the stage 13-15 of embryonic development. The PGCs collected from the embryonic blood vessels were examined for the incorporation of the injected DNA into the PGCs by the methods of X-gal staining and PCR analysis. As the results, the foreign DNA was successfully incorporated into the PGCS, leading to their transfer to the gonadal tissues. The present results, therefore, suggest that the early stage (3-5 or 9-11) of chicken embryonic development would be more successful than stage 13-15 in transferring exogenous genes to the recipient embryos, leading to the possibility of producing transgenic chicken medianting the PGCS.

Exogenous Indole Regulates Lipopeptide Biosynthesis in Antarctic Bacillus amyloliquefaciens Pc3

  • Ding, Lianshuai;Zhang, Song;Guo, Wenbin;Chen, Xinhua
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.5
    • /
    • pp.784-795
    • /
    • 2018
  • Bacillus amyloliquefaciens Pc3 was isolated from Antarctic seawater with antifungal activity. In order to investigate the metabolic regulation mechanism in the biosynthesis of lipopeptides in B. amyloliquefaciens Pc3, GC/MS-based metabolomics was used when exogenous indole was added. The intracellular metabolite profiles showed decreased asparagine, aspartic acid, glutamine, glutamic acid, threonine, valine, isoleucine, hexadecanoic acid, and octadecanoic acid in the indole-treated groups, which were involved in the biosynthesis of lipopeptides. B. amyloliquefaciens Pc3 exhibited a growth promotion, bacterial total protein increase, and lipopeptide biosynthesis inhibition upon the addition of indole. Besides this, real-time PCR analysis further revealed that the transcription of lipopeptide biosynthesis genes ituD, fenA, and srfA-A were downregulated by indole with 22.4-, 21.98-, and 26.0-fold, respectively. It therefore was speculated that as the metabolic flux of most of the amino acids and fatty acids were transferred to the synthesis of proteins and biomass, lipopeptide biosynthesis was weakened owing to the lack of precursor amino acids and fatty acids.

FUNCTIONAL EXPRESSION OF A PEPTIDE TRANSPORTER IN XENOPUS OOCYTES

  • Oh, Doo-Man
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.3
    • /
    • pp.31-40
    • /
    • 1993
  • It is essential to clone the peptide transporter in order to obtain better understanding of its molecular structure, regulation, and substrate specificity. Characteristics of an endogenous peptide transporter in oocytes were studied along with expression of an exogenous proton/peptide cotransporter from rabbit intestine. And further efforts toward cloning the transporter were performed. The presence of an endogenous peptide transporter was detected in Xenopus laevis oocytes by measuring the uptake of $0.25\;{\mu}M\;(10\;{\mu}Ci/ml)\;[^3H]-glycylsarcosine$ (Gly-Sar) at pH 5.5 with or without inhibitors. Uptake of Gly-Sar in oocytes was significantly inhibited by 25 mM Ala-Ala, Gly-Gly, and Gly-Sar (p<0.05), but not by 2.5 mM of Glu-Glu, Ala-Ala, Gly-Gly, Gly-Sar and 25 mM glycine and sarcosine. This result suggests that a selective transporter is involved in the endogenous uptake of dipeptides. Collagenase treatment of oocytes used to strip oocytes from ovarian follicles did not affect the Gly-Sar uptake. Changing pH from 5.5 to 7.5 did not affect the Gly-Sar uptake significantly, suggesting no dependence of the endogenous transporter on a transmembrane proton gradient. An exogenous $H^+/peptide$ cotransporter was expressed after microinjection of polyadenylated messenger ribonucleic acid $[poly\;(A)^+-mRNA]$ obtained from rabbit small intestine. The Gly-Sar uptake in mRNA-injected oocytes was 9 times higher than that in water-injected oocytes. Thus, frog oocytes can be utilized for expression cloning of the genes encoding intestinal $H^+/peptide$ cotransporters. Using the technique size fractionation of mRNA was sucessfully obtained.

  • PDF