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ABSTRACT

It is essential to clone the peptide transporter in order to obtain better understanding of its
molecular structure, regulation, and substrate specificity.  Characteristics of an
endogenous peptide transporter in oocytes were studied along with expression of an
exogenous proton/peptide cotransporter from rabbit intestine. And further efforts toward
cloning the transporter were performed. The presence of an endogenous peptide
transporter was detected in Xeriopus laevis oocytes by measuring the uptake of 0.25 uM
(10 uCi/ml) [3H]-glycylsarcosine (Gly-Sar) at pH 5.5 with or without inhibitors. Uptake of
Gly-Sar in oocytes was significantly inhibited by 25 mM Ala-Ala, Gly-Gly, and Gly-Sar
(2<0.05), but not by 2.5 mM of Glu-Glu, Ala-Ala, Gly-Gly, Gly-Sar and 25 mM glycine
and sarcosine. This result suggests that a selective transporter is involved in the
endogenous uptake of dipeptides.Collagenase treatment of oocytes used to strip oocytes
from ovarian follicles did not affect the Gly-Sar uptake. Changing pH from 5.5 to 7.5 did
not affect the Gly-Sar uptake significantly, suggesting no dependence of the endogenous
transporter on a transmembrane proton gradient. An exogenous H*/peptide cotransporter
was expressed afier microinjection of polyadenylated messenger ribonucleic acid [poly
(A)*-mRNA] obtained from rabbit small intestine. The Gly-Sar uptake in mRNA-injected
oocytes was 9 times higher than that in water-injected oocytes. Thus, frog oocytes can be
utilized for expression cloning of the genes encoding intestinal H*/peptide cotransporters.
Using the technique size fractionation of mRNA was sucessfully obtained.

INTRODUCTION

A number of biologically active peptides are absorbed from the intestine into the blood,
some of them rapidly and on a large scale. Peptides or their analogs that are active when
given by mouth include a number of antibiotics, toxins, hypothalamic hormonal regulatory
factors, and vitamins containing a peptide linkage, such as folic acid (pteroylglutamic acid)
and pantothenic acid. Many biologically active peptides are structurally suitable for
mediated uptake by the mechanisms responsible for transport of small dietary peptides (1).
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Carnosine which is a dietary peptide as well as a putative neurotransmitter, and
thyroliberin (pyro-Glu-His-Pro-NH2) can be rapidly and effectively absorbed (1). Amino-
B-lactam antibiotics, such as aminopenicillins and aminocephalopsporins, appear to share a

common uptake mechanism with ordinary dietary peptides, and some have been shown to
be. actively transported (2-5). Alafosfalin (l-alanyl-l-1-aminoethylphosphoric acid), an
antibacterial phosphonodipeptide, has also been reported to share the intestinal transport
systems for dietary peptides (6). Further captopril (7), angiotensin converting enzyme
(ACE) inhibitors (8,9), and renin inhibitors (10) interact with the intestinal peptide
transporter.  Making poorly absorbed but therapeutically active molecules readily
absorbable by incorporating molecular features required for the peptide transporter is an
attractive approach.

Carrier-mediated transport of small peptides takes place in intestine, kidney, liver, brain
(11), skeletal muscle, red cells (12), and in transformed cell lines. However, the structural
requirements for peptide transport are not identical in all cells and tissues examined (13).
Small peptides are transported from the intestinal lumen into the absorptive cells by an
efficient, specialized carrier-mediated process which is different from that of free amino
acids in both animals and humans (1,2,13). It has been suggested that intestinal and renal
transport of peptides involves co-transport with proton. Ganapathy and Leibach (14)
suggested that in the intact absorptive cell a Na* gradient might stimulate peptide
transport indirectly by producing a proton gradient via the Na*/H* exchanger.

Few studies on structural identification of peptide transporter have been done.
Photoaffinity labeling demonstrates that a membrane protein of molecular weight 127 kDa
could be a component of the intestinal transporter (15-17). It was demonstrated that a
specific interaction of the o-amino group in the substituent at position 6 or 7 of the penam
or cephem nucleus, presumably with a histidine residue of the peptide transport protein, is
involved in the translocation process of orally active a-amino-f-lactam antibiotics across
the intestinal brush-border membrane (18,19). Miyamoto et al. (20) showed that histidyl
and thiol groups are present at or near the active substrate-binding site of the rabbit renal
dipeptide transporter. One or more vicinal dithiol groups are essential for the function of
the renal dipeptide transporter, and these thiol groups must exist in a reduced form to
maintain maximal transport activity (21). Kramer et al. (22) identified two binding
polypeptides for B-lactam antibiotics and dipeptides with molecular weights 130 kDa and
95 kDa. Further, the transporters for B-lactam antibiotics and dipeptides in the brush-
border membrane from rat kidney and small intestine are similar but not identical..
Molecular cloning and controlled expression of the transporter genes are essential to gain
further insights into the biology of peptide transport. Cloning the genes encoding for the
intestinal peptide transporter(s) may answer the following questions: How many distinct
dipeptide transporters exist? What are their specificities? How is their expression
regulated? What are the structure and functions of these membrane proteins? The cloned
gene will allow us to fully characterize the molecular features of the transporter for
therapeutic applications and to search for homologous genes with similar function. For
example, its regulation may occur by voltage changes, binding of regulatory ions, such as
H* or Ca*, by chemical modification, such as phosphorylation, or by cellular trafficking, as
it occurs in endocytosis or membrane fusion (23). Transporters are universal elements
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regulating access of substrates to their sites of action, and therefore targets of
therapeutically useful drugs.

For determining the biological properties of a transport polypeptide, it is necessary to
clone the gene(s) encoding the transporter traditionally by isolating the protein for partially

sequencing to obtain suitable molecular probes. The successful isolation of carrier
proteins from biomembranes has so far been limited mostly to cases where the carrier is
present in sufficiently high amounts (24). In general, conventional purification procedures
of such hydrophobic proteins are known to be difficult. An alternative method known as
expression cloning has been introduced by Hediger et al. (25,26) to clone a Na*/glucose
transporter.  Recently it has been reported that the intestinal peptide transporter in
Xenopus oocytes was functionally expressed by the injection of exogenous poly (A)*
mRNA isolated from rabbit intestinal mucosal cells (27). However it is essential to clone
the peptide transporter in order to obtain better understanding of its molecular structure,
regulation, and substrate specificity. As a preliminary experiment toward cloning the
transporter, the characteristics of an endogenous peptide transporter in oocytes were
studied along with expression of an exogenous proton/peptide cotransporter from rabbit
intestine. In order to get an enriched fraction of mRNA from the rabbit intestine, further
size fractionation was performed.

METHODS
Isolation of Oocytes

Mature female Xenopus laevis frogs (Xenopus One, Ann Arbor, MI) were anesthetized
with 0.3 % tricaine solution. Individual oocytes were isolated manually from the ovarian
lobes. The oocytes were washed and stored overnight at 18 °C in Modified Barth's
Solution (pH 7.5) with antibiotics.

Preparation of mRNA

Total cellular RNA was isolated from intestinal mucosal cells scraped from rabbit jejunum
as described by Chomcyznski and Sacchi (28). Poly (A)* mRNA was isolated using a
commercial kit (Pharmacia LKB, Piscataway, NJ) from total RNA. Only mRNA
preparations yielding a clear actin (or SGLT) band in Northern blots with actin (or SGLT)
c¢DNA is used for microinjection

Microinjection of mRNA
Each bocy’te was injected into the vegital hemisphere with 50 nl of either mRNA (1
mg/ml) or DEPC-treated water as a control. The injected oocytes were incubated up to 5

days in Ca,*-containing medium (5mM Hepes/NaOH, 96 mM NaCl, 2 mM KCl, 1 mM
MgCl,, 1.8 mM CaCl,) at 18 °C.
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Transport Measurements

Five to seven oocytes were placed in 200 pl of uptake media (pH 5.5) containing 10
pCvml of [3H]-Glycylsarcosine (Gly-Sar, Amersham) on a multiwell dish. Oocytes were
incubated for 1 h at room temperature. The incubation was terminated by adding cold
buffer. Qocytes were washed several times and transferred to scintillation vials. The

radioactivity associated with the oocytes was determined in a liquid scintillation counter
(Beckmann LS6000).

Size Fractionation of Total mRNA

100 pug of mRNA was fractionated on a linear sucrose gradient (5 to 25 %, w/w) by
centrifugation for 17h at 34,000 rpm (29). 0.5 ml fractions were collected and
precipitated with ethanol. Fractions were pooled into 5 pools (P1 to PS) to further inject
into oocytes.

RESULTS

Table I. Inhibition of endogenous Gly-Sar uptake in Xenopus oocytes by several
dipeptides

Inhibitor Concentration Uptake (fmol/hour/oocyte) % Control
(mM)
Mean S.E.
Control --* 4.09 0.24 100
Ala-Ala 25 5.43 2.02 132.83
Ala-ALa 25 2.29 0.12 56.12**
Glu-Glu 2.5 4.46 0.18 109.05
Gly-Gly 25 3.62 0.59 88.59
Gly-Gly 25 3.1 0.13 75.81**
Gly-Sar 2.5 3.58 0.17 87.66
Gly-Sar 25 3 0.44 73.46**

* Concentration of Gly-Sar was 0.256 yM
** Significant (p <0.05). n=31t0 9
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Fig. 1. Endogenous peptide uptake in the oocytes at two different concentrations of
[*H]Gly-Sar in the presence of high concentrations of cold Gly-Sar as an inhibitor. The 1
uCi/ml of tracer concentration was insufficient to study its uptake. Mean ( + S.E.)
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inhibited endogenous uptake in both collagenase treated and nontreated oocytes. Mean (
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Fig. 3. The pH effect on the endogenous peptide uptake in Xenopus oocytes. The proton
gradient does not affect the Gly-Sar uptake. Mean (+ S.E.). n=10.
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Fig. 4. Inhibition of endogenous peptide uptake in Xenopus oocytes. Individual amino
acids did not affect the uptake, while 25 mM Gly-Sar reduced the uptake significantly.
Mean (£ S.E). n=4to 10.
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Fig. 5. Time dependence of the exogenous proton/peptide cotransporter- expressed in
Xenopus oocytes. The mRNA-injected -oocytes expressed 9 times higher uptake
compared to water-injected oocytes. Mean (£ S.E.). n=3to 6.
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Fig. 6. Expression of exogenous proton/peptide cotransporter after microinjection of size
fractionated mRNA into Xenopus oocytes. Approximately 10 ng of mRNA from each pool
was injected and 50 ng of water or total mRNA were injected. Five days afier
microinjection the Gly-Sar uptake was measured. Pool 3 (P3) shows significant
expression over other pools. Mean (£ S.E)). n=4t0 10
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CONCLUSIONS

The presence of an endogenous peptide transporter was confirmed by an inhibition study
with several dipeptides. 1t is specific for dipeptides but not amino acids. Collagenase
treatment of oocytes used to strip oocytes from ovarian follicles did not affect the
endogenous peptide uptake. The endogenous Gly-Sar uptake was not affected by
changing pH from 5.5 to 7.5. Exogenous proton/peptide cotransporter from rabbit
jejunum was successfully expressed in Xenopus oocytes. Therefore, frog oocytes can be
utilized for expression cloning of the genes encoding intestinal proton/peptide
cotransporters.  The enriched expression of exogenous proton/peptide cotransporter was
obtained after size fractionation of total mRNA of rabbit intestines.
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