• Title/Summary/Keyword: Exogenous Genes

Search Result 147, Processing Time 0.026 seconds

A PAS-Containing Histidine Kinase is Required for Conidiation, Appressorium Formation, and Disease Development in the Rice Blast Fungus, Magnaporthe oryzae

  • Shin, Jong-Hwan;Gumilang, Adiyantara;Kim, Moon-Jong;Han, Joon-Hee;Kim, Kyoung Su
    • Mycobiology
    • /
    • v.47 no.4
    • /
    • pp.473-482
    • /
    • 2019
  • Rice blast disease, caused by the ascomycete fungus Magnaporthe oryzae, is one of the most important diseases in rice production. PAS (period circadian protein, aryl hydrocarbon receptor nuclear translocator protein, single-minded protein) domains are known to be involved in signal transduction pathways, but their functional roles have not been well studied in fungi. In this study, targeted gene deletion was carried out to investigate the functional roles of the PAS-containing gene MoPAS1 (MGG_02665) in M. oryzae. The deletion mutant ΔMopas1 exhibited easily wettable mycelia, reduced conidiation, and defects in appressorium formation and disease development compared to the wild type and complemented transformant. Exogenous cAMP restored appressorium formation in ΔMopas1, but the shape of the restored appressorium was irregular, indicating that MoPAS1 is involved in sensing the hydrophobic surface. To examine the expression and localization of MoPAS1 in M. oryzae during appressorium development and plant infection, we constructed a MoPAS1:GFP fusion construct. MoPAS1:GFP was observed in conidia and germ tubes at 0 and 2 h post-infection (hpi) on hydrophobic cover slips. By 8 hpi, most of the GFP signal was observed in the appressoria. During invasive growth in host cells, MoPAS1:GFP was found to be fully expressed in not only the appressoria but also invasive hyphae, suggesting that MoPAS may contribute to disease development in host cells. These results expand our knowledge of the roles of PAS-containing regulatory genes in the plant-pathogenic fungus M. oryzae.

Effects of Melatonin on Improvement of Neurological Function in Focal Cerebral Ischemic Rats

  • Lee, Seung-Hoon;Shin, Jin-Hee;Lee, Min-Kyung;Lee, Sang-Kil;Lee, Sang-Rae;Chang, Kyu-Tae;Hong, Yong-Geun
    • Reproductive and Developmental Biology
    • /
    • v.35 no.2
    • /
    • pp.167-174
    • /
    • 2011
  • Acute ischemic stroke results from sudden decrease or loss of blood supply to an area of the brain, resulting in a coinciding loss of neurological function. The antioxidant action of melatonin is an important mechanism among its known effects to protective activity during ischemic/reperfusion injury. The focus of this research, therapeutic efficacy of melatonin on recovery of neurological function following long term treatment in ischemic brain injured rats. Male Sprague-Dawley rats (n=40; 8 weeks old) were divided into the control group, and MCAo groups (Vehicle, MT7 : MCAo+ melatonin injection at 7:00, MT19 : MCAo+melatonin injection at 19:00, and MT7,19 : MCAo+melatonin injection at 7:00 and 19:00). Rat body weight and neurological function were measured every week for 8 weeks. After 8 weeks, the rats were anesthetized with a mixture of zoletil (40 mg/kg) and xylazine (10 mg/kg) and sacrificed for further analysis. Tissues were then collected for RNA isolation from brain tissue. Also, brain tissues were analyzed by histological procedures. We elucidated that melatonin was not toxic in vital organs. MT7,19 was the most rapidly got back to mild symptom on test of neurological parameter. Also, exogenous melatonin induces both the down-regulation of detrimental genes, such as NOSs and the up-regulation of beneficial gene, including BDNF during long term administration after focal cerebral ischemia. Melatonin treatment reduced the loss of primary motor cortex. Therefore, we suggest that melatonin could be act as prophylactic as well as therapeutic agent for neurorehabilitative intervention.

Androgen in the Uterus: A Compensator of Estrogen and Progesterone

  • Cheon, Yong-Pil;Lee, Dong-Mok;Chun, Tea-Hoon;Lee, Ki-Ho;Choi, In-Ho
    • Development and Reproduction
    • /
    • v.13 no.3
    • /
    • pp.133-143
    • /
    • 2009
  • Pivotal roles of steroid hormones in uterine endometrial function are well established from the mouse models carrying the null mutation of their receptors. Literally androgen belongs to male but interestingly it also detected in female. The fluctuations of androgen levels are observed during reproductive cycle and pregnancy, and the functional androgen receptor is expressed in reproductive organs including uterus. Using high throughput methodology, the downstream genes of androgen have been isolated and revealed correlations between other steroid hormones. In androgen-deficient mice, uterine responses to exogenous gonadotropins are impaired and the number of pups per litter is reduced dramatically. As expected androgen has important role in decidual differentiation through AR. It regulates specific gene network during those cellular responses. Recently we examined the effects of steroid hormonal complex containing high level of androgen. Interestingly, on the contrary to the androgen-alone administration, the hormonal complex did not disturb the decidual reaction and the pubs did not show any morphological abnormality. It is suspected that the complexity of communication between other steroid hormone and their receptors are the reasons. In summary, androgen exists in female blood and it suggests the importance of androgen in female reproduction. However, the complex interactions with other hormones are not fully understood compared with estrogen and progesterone. The further studies to evaluate the possible role of androgen are needed and important to provide the in vivo rational for the prevention of associated pregnancy complications and help human's health.

  • PDF

Expression of $\beta$-Galactosidase Gene Microinjected into Xenopus Egg During Early Development (초기발생 동안 양서류 난에 미세주입된 $\beta$-galactosidase 유전자의 발현)

  • 차병직;정해문
    • The Korean Journal of Zoology
    • /
    • v.33 no.3
    • /
    • pp.365-372
    • /
    • 1990
  • For the effort to produce transgenic amphibians, a plasmid DNA sequence (cytoplasmic actin promoter-linked bacterial $\beta$-galactosidase gene) was microinjected into fertilized Xenopus eggs. It appeared that the injection of 20 nl solution containing 1-2 ng of DNA was not toxic, but over 4 ng was toxic to embryonic development. The translational product of $\beta$-gal gene ($\beta$-galactosidase) had enzyme activity in all three germ layers of the embryo. Expression of the injected $\beta$-gal genes was first detected at mid-gastrula stage, and the activity persisted up to stage 43 (feeding tadpole) with decreased level of retention. However, the level of the expression was various among the injected individuals as well as each experiment. That is, $\beta$-galactosidase activities did not appear in all cells, instead a localized distribution pattern. Although other possibilities could not be omitted, this mosaic distribution of gene expression seemed to arise from unequal partition of the injected DNA into each blastomere during early cleavage.

  • PDF

In Vitro Flowering System (In Vitro 시스템에 의한 화호형성)

  • 류장렬;이행순;이광웅
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1987.07a
    • /
    • pp.213-237
    • /
    • 1987
  • In vitro flowering system may minimize the confounded influence of non-floral meristem parts of plants in studying the relationship of a given treatment and flowering responses. We have induced flower buds from plantlets regenerated from zygotic embryo-derived somatic embryos of ginseng, which circumvented the normal 2-year juvenile period before flowering. The result suggests that the adulthood of ginseng root explants in the experiment previously conducted by Chang and Hsing (1980; Nature 284: 341-342) is not prerequired to flowering of plantlets regenerated through somatic embryogenesis. We have also induced flower buds from elongated axillary brandches from cotyledonary nodes by culturing ginseng zygotic embryos, seedlings, and excised cotyledonary nodes. It was found that 6-benzyladenine (BA) supplemented to the medium was essential for flowering, whereas abscisic acid (ABA) was inhibitory. Gibberellic acid(GA3) was also required for flowering when ABA was present with BA in the medium. The results suggest that cytokinins, gibberellins, and inhibitors play primary, permissive, and preventive roles, respective-ly, in the induction of flowering of ginseng. Tran Thanh Van (1980; Int. Rev. Cytol., Suppl. IIA: 175-194) has developed the "thin cell layer system" in which the induction of shoots, roots, or flower buds from epidermal layer explants were controlled by culture conditions and exogenous growth regulators in the medium, Utilizing the thin cell layer system, Meeks-Wagner et al. (1989; The Plant Cell 1: 25-35) have cloned genes specifically expressed during floral evocation. However, the system is too tedious for obtaining a sufficient amount of plant materials for biochmical and molecular biological studies of flowering. We have developed a garlic callus culture system and one obvious advantaging over the thin cell layer system is that an abundant cells committed to develope into flower buds proliferate. When the above cells were compared by two-dimensional gel electrophoresis with those which have just lost the competence for developing into flower buds, a few putative proteins specific to floral evocation were detected. The garlic callus culture system can be further explored for elucidation of the molecular biological mechanism of floral evocation and morphogenesis.hogenesis.

  • PDF

Gintonin stimulates autophagic flux in primary cortical astrocytes

  • Rahman, Md. Ataur;Hwang, Hongik;Nah, Seung-Yeol;Rhim, Hyewhon
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.67-78
    • /
    • 2020
  • Background: Gintonin (GT), a novel ginseng-derived exogenous ligand of lysophosphatidic acid (LPA) receptors, has been shown to induce cell proliferation and migration in the hippocampus, regulate calcium-dependent ion channels in the astrocytes, and reduce β-amyloid plaque in the brain. However, whether GT influences autophagy in cortical astrocytes is not yet investigated. Methods: We examined the effect of GT on autophagy in primary cortical astrocytes using immunoblot and immunocytochemistry assays. Suppression of specific proteins was performed via siRNA. LC3 puncta was determined using confocal microscopy. Results: GT strongly upregulated autophagy marker LC3 by a concentration- as well as time-dependent manner via G protein-coupled LPA receptors. GT-induced autophagy was further confirmed by the formation of LC3 puncta. Interestingly, on pretreatment with an mammalian target of rapamycin (mTOR) inhibitor, rapamycin, GT further enhanced LC3-II and LC3 puncta expression. However, GT-induced autophagy was significantly attenuated by inhibition of autophagy by 3-methyladenine and knockdown Beclin-1, Atg5, and Atg7 gene expression. Importantly, when pretreated with a lysosomotropic agent, E-64d/peps A or bafilomycin A1, GT significantly increased the levels of LC3-II along with the formation of LC3 puncta. In addition, GT treatment enhanced autophagic flux, which led to an increase in lysosome-associated membrane protein 1 and degradation of ubiquitinated p62/SQSTM1. Conclusion: GT induces autophagy via mTOR-mediated pathway and elevates autophagic flux. This study demonstrates that GT can be used as an autophagy-inducing agent in cortical astrocytes.

Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis

  • Song, Chieun;Chung, Woo Sik;Lim, Chae Oh
    • Molecules and Cells
    • /
    • v.39 no.6
    • /
    • pp.477-483
    • /
    • 2016
  • Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide ($H_2O_2$), and an endogenous $H_2O_2$ propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis.

Sediment Bacterial Community Structure under the Influence of Different Domestic Sewage Types

  • Zhang, Lei;Xu, Mengli;Li, Xingchen;Lu, Wenxuan;Li, Jing
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1355-1366
    • /
    • 2020
  • Sediment bacterial communities are critical to the biogeochemical cycle in river ecosystems, but our understanding of the relationship between sediment bacterial communities and their specific input streams in rivers remains insufficient. In this study, we analyzed the sediment bacterial community structure in a local river receiving discharge of urban domestic sewage by applying Illumina MiSeq high-throughput sequencing. The results showed that the bacterial communities of sediments samples of different pollution types had similar dominant phyla, mainly Proteobacteria, Actinobacteria, Chloroflexi and Firmicutes, but their relative abundances were different. Moreover, there were great differences at the genus level. For example, the genus Bacillus showed statistically significant differences in the hotel site. The clustering of bacterial communities at various sites and the dominant families (i.e., Nocardioidaceae, and Sphingomonadaceae) observed in the residential quarter differed from other sites. This result suggested that environmentally induced species sorting greatly influenced the sediment bacterial community composition. The bacterial co-occurrence patterns showed that the river bacteria had a nonrandom modular structure. Microbial taxonomy from the same module had strong ecological links (such as the nitrogenium cycle and degradation of organic pollutants). Additionally, PICRUSt metabolic inference analysis showed the most important function of river bacterial communities under the influence of different types of domestic sewage was metabolism (e.g., genes related to xenobiotic degradation predominated in residential quarter samples). In general, our results emphasize that the adaptive changes and interactions in the bacterial community structure of river sediment represent responses to different exogenous pollution sources.

Liposome-Mediated Electric Gene Delivery into Fetal and Adult Gonads (Liposome을 매개로 한 태아 및 웅성 생식선으로의 전기적 유전자 도입)

  • Choi, S. C.;S. K. Choi;S. S. Choi;S. U. Kim;N. N. Cho;J. Y. Jung;C. S. Park;S. H. Lee;S. H. Lee
    • Reproductive and Developmental Biology
    • /
    • v.28 no.1
    • /
    • pp.71-76
    • /
    • 2004
  • Gene delivery is one of the keen interests in animal industry as well as research on gene functions. Some of the in vivo gene delivery techniques have been successively used in various tissues for the gene therapy and transgenesis. Despite intensive efforts, it still remains to overcome problems of limited local and regional administration and low transgene expression. To improve the efficiency of gene delivery, a new procedure was tested. We injected exogenous DNA containing LacZ into the female or male gonads and then pulsed electric field. Electroporated gonads showed positive X-gal staining in many seminiferous tubules of the porcine fetal gonads. Exogenously introduced LacZ genes were also expressed in female porcine gonad. In addition, we demonstrated efficient gene delivery in gonad of adult mouse. Furthermore, we succeed to generate genetically modified germline cells showing GFP and positive X-gal signals. The results suggest that the newly developed gene delivery is an effective way of in vivo transfection in mammals. The developed gene delivery procedure should be useful in producing transgenic animals when combined with primary cell culture and nuclear transplantation.

Establishment of Immortalized Primary Human Foreskin Keratinocytes and Their Application to Toxicity Assessment and Three Dimensional Skin Culture Construction

  • Choi, Moonju;Park, Minkyung;Lee, Suhyon;Lee, Jeong Woo;Cho, Min Chul;Noh, Minsoo;Lee, Choongho
    • Biomolecules & Therapeutics
    • /
    • v.25 no.3
    • /
    • pp.296-307
    • /
    • 2017
  • In spite of frequent usage of primary human foreskin keratinocytes (HFKs) in the study of skin biology, senescence-induced block-age of in vitro proliferation has been a big hurdle for their effective utilization. In order to overcome this passage limitation, we first isolated ten HFK lines from circumcision patients and successfully immortalized four of them via a retroviral transduction of high-risk human papillomavirus (HPV) E6 and E7 oncogenes. We confirmed expression of a keratinocyte marker protein, keratin 14 and two viral oncoproteins in these immortalized HFKs. We also observed their robust responsiveness to various exogenous stimuli, which was evidenced by increased mRNA expression of epithelial differentiation markers and pro-inflammatory genes in response to three reactive chemicals. In addition, their applicability to cytotoxicity assessment turned out to be comparable to that of HaCaT cells. Finally, we confirmed their differentiation capacity by construction of well-stratified three dimensional skin cultures. These newly established immortalized HFKs will be valuable tools not only for generation of in vitro skin disease models but also for prediction of potential toxicities of various cosmetic chemicals.