• Title/Summary/Keyword: Exit point

Search Result 214, Processing Time 0.031 seconds

Performance Criterion of Bispectral Speckle Imaging Technique (북스펙트럼 스펙클 영상법의 성능기준)

  • 조두진
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.28-35
    • /
    • 1993
  • In the case of an imaging system affected by aberrations which are not precisely known, the effect of aberrations can be minimized and near-diffraction-limited images can be restored by introducing artificial random phase fluctuations in the exit pupil of the imaging system and using bispectral speckle imaging. In order to determine the optimum value of the correlation length for Gaussian random phase model, computer simulation is performed for 50 image frames of a point object in the presence of defocus, spherical aberration, coma, astigmatism of 1 wave, respectively. In terms of the criterion of performance, the FWHM of the point spread function, normalized peak intensity, MTF and visual inspection of the restored object are employed. The optimum value for the rms difference $\sigma$ of aberration on the exit pupil in the interval of Fried parameter ${\Upsilon}_0$ is given by 0.27-0.53 wave for spherical aberration, and 0.24-0.36 wave for defocus and astigmatism, respectively. It is found that the bispectral speckle imaging technique does not give good results in the case of coma.

  • PDF

Study of Energy Separation Mechanism in Vortex Tube by CFD (볼텍스 튜브의 에너지 분리 현상에 관한 수치해석 연구)

  • Choi, Won-Chul;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.92-99
    • /
    • 2008
  • The "energy separation phenomenon" through a vortex tube has been a long-standing mechanical engineering problem whose operational principle is not yet known. In order to find the operational principle of the vortex tube, CFD analysis of the flow field in the vortex tube has been carried out. It was found that the energy separation mechanism in the vortex tube consists of basically two major thermodynamic-fluid mechanical processes. One is the isentropic expansion process at the inlet nozzle, during which the gas temperature is nearly isentropically cooled. Second process is the viscous dissipation heating due to the high level of turbulence in both flow passages toward cold gas exit as well as the hot gas exit of the vortex tube. Since the amount of such a viscous heating is different between the two passages, the gas temperature at the cold exit is much lower than that at the hot exit.

Experimental Analysis of Radiative Heat Interchange on Furnace Exit Plane of a Steam Boiler

  • Ahn, Kook-Young;Antonovsky, Vjacheslav-Ivanovich
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.2
    • /
    • pp.239-247
    • /
    • 2001
  • Measured radiative heat fluxes on the furnace exit plane of a heavy duty power boiler of steam output 1650 T/h are discussed. A high-ash pulverized bituminous coal was used. Such measurements are necessary to improve heat fluxes inside a steam boiler furnace was manufactured. An extra small heat radiation sensor was placed in the water cooled head of the probe. The sensor had no direct contact with furnace gases and measured only the radiant energy. There was no exposure to convective heat transfer. With the radiometric probe, one can obtain a spherical indicatrix of radiation intensity as well as hemispherical radiative heat flux incident on any surface passing through a measuring point inside the furnace. Thus, the quantity of radiation energy, passing through the furnace exit plane, to the convective heating surfaces and the quantity of radiation energy going in the opposite direction were measured. A formula for relative radiative heat flux on the furnace exit plane has been proposed.

  • PDF

Geometrical Analysis on the Formation Mechanism of Milling Burr on Arbitrary Feature (임의형상의 버 발생 메카니즘의 기하학적 해석)

  • 이제열;안용진;김영진
    • Korean Journal of Computational Design and Engineering
    • /
    • v.6 no.4
    • /
    • pp.222-228
    • /
    • 2001
  • In the milling operation, the burr can be generated on the intersection of cutting tool and workpiece. Due to burr formation, we expect lower efficiency in the operation and the cost increase. In order to understand the burr formation mechanism in the milling operation on the arbitrary feature, we developed an algorithm to analyse and predict the exit burr formation mechanism. Firstly, the recognition of arbitrary shaped workpiece was done through the CAD data. This data includes point information on the vertices of the workpiece. Secondly, tile CAM data regarding tool geometry, tool path, cutting speed, and material data are retrieved to simulate the actual cutting process. Thirdly, we predict the exit burr formation on the edge of workpiece based on the geometric analysis. Lastly, an algorithm implemented in the Windows environment to visualize the burr formation simulation. With this information, we can predict which portion of workpiece would have the exit burr in advance so that we call manage to find a way to minimize the edit burr formation in the actual cutting.

  • PDF

Experimental and Computational Study on Separation Control Performance of Synthetic Jets with Circular Exit

  • Kim, Minhee;Lee, Byunghyun;Lee, Junhee;Kim, Chongam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.296-314
    • /
    • 2016
  • This paper presents experimental and computational investigations of synthetic jets with a circular exit for improving flow control performance. First, the flow feature and vortex structure of a multiple serial circular exit were numerically analyzed from the view point of flow control effect under a cross flow condition. In order to improve separation control performance, experimental and numerical studies were conducted according to several key parameters, such as hole diameter, hole gap, the number of hole, jet array, and phase difference. Experiments were carried out in a quiescent condition and a forced separated flow condition using piezoelectrically driven synthetic jets. Jet characteristics were compared by measuring velocity profiles and pressure distributions. The interaction of synthetic jets with a freestream was examined by analyzing vortical structure characteristics. For separation control performance, separated flow over an airfoil at high angles of attack was employed and the flow control performance of the proposed synthetic jet was verified by measuring aerodynamic coefficient. The circular exit with a suitable hole parameter provides stable and persistent jet vortices that do beneficially affect separation control. This demonstrates the flow control performance of circular exit array could be remarkably improved by applying a set of suitable hole parameters.

User Identification and Entrance/Exit Detection System for Smart Home (지능형 홈을 위한 사용자 식별 및 출입 감지 시스템)

  • Lee, Seon-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.3
    • /
    • pp.248-253
    • /
    • 2008
  • This paper presents a sensing system for smart home which can detect an location transition events such as entrance/exit of a member and identify the user in a group at the same time. The proposed system is compose of two sub-systems; a wireless sensor network system and a database server system. The wireless sensing system is designed as a star network where each of sensing modules with ultrasonic sensors and a Bluetooth RF module connect to a central receiver called Bluetooth access point. We propose a method to discriminate a user by measuring the height of the user. The differences in the height of users is a key feature for discrimination. At the same time, the each sensing module can recognize whether the user goes into or out a room by using two ultrasonic sensors. The server subsystem is a sort of data logging system which read the detected event from the access point and then write it into a database system. The database system could provide the location transition information to wide range of context-aware applications for smart home easily and conveniently. We evaluate the developed method with experiments for three subjects in a family with the installation of the developed system into a real house.

Zigbee Communication Based Wireless System for Measuring Lap Time on a Sprints (지그비 통신에 기반한 단거리 육상경기 기록측정 시스템)

  • Jeong, Seung-Hyun;Choi, Deuk-sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.2
    • /
    • pp.86-89
    • /
    • 2018
  • This paper introduces a ZigBee network-based four-lane lap time measurement system that can be set up for short-distance races. The instructions "Ready-Set-Go" can be announced at the entry point node when the start button is pushed, and foot switches installed at the exit point node can be stepped on by the runner for lap time measurement of the race. The start and exit point nodes are connected to a ZigBee network to communicate time synchronization packets. The exit point node maintains synchronized local time within 10 ms at most. The system does not need expensive measurement equipment and provides lap time recording in a more convenient manner than conventional lap time measurement methods.

An Experimental Study on the Characteristics of Temperature Distribution in Internal Space of a Tube for the Formal Change of Counterflow Type Vortex Tube (대향류형 보텍스 튜브의 노즐형상 변화011 따른 튜브 내부의 온도분포에 관한 실험적 연구)

  • 황승식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.69-76
    • /
    • 2002
  • The aim of this study is to provide fundamental informations that make it possible to use a cool stream and a hot stream simultaneously. We changed the pressure of compressed air that flows into a tube, the inner diameter of orifice that a cold stream exits, and the mass flow rate ratio. And in each case, we measured the temperature of a cold stream and a hot stream in each exit of a tube. Also we measured the axial and the radial temperature distribution in internal spare of a tube. From the study, fellowing conclusive remarks 7an be made. First, As the number of nozzles increase, separation point move into the hot exit. Second, When we use guide vane type nozzle, the axial temperature distribution constant over the 0.75 of air mass flow rate radio. Third, When we use Spiral type nozzle, axial and radial temperature distribution in the inner space is higher than another nozzle. Fourth, Axial and radial temperature distribution in the inner space vortex-tube is determined by separation point. And separation point is moved by changing of air mass flow rate ratio. At last, A heating apparatus is possible far vortex-tube to use.

A Study on the Aging Change of Exit Light by Measuring the Ratio of Luminance (휘도비 측정을 통한 유도등의 경년변화 연구)

  • Jung, Jong-Jin
    • Fire Science and Engineering
    • /
    • v.33 no.6
    • /
    • pp.181-185
    • /
    • 2019
  • In this study, Exit light installed in offices, malls, hospitals, and factories were analyzed to analyze the luminance performance of CCFL and LED light sources. In addition, fire protection products with electrical characteristics such as Exit light may change their performance due to ambient temperature, humidity, and dust. So it was extracted by installation place and analyzed its characteristics. As a result of the experiment, Exit light for CCFL type showed the value of 'ratio of luminance 2' for large, medium and small. Considering that the reference value was 'lower than 9', the value was very good and it can be seen that there is almost no change in ratio of luminance due to aging. The Exit light for LED type showed a value of 'ratio of luminance 5', which means that the light on the display surface is not uniform. In addition, there was almost no change in ratio of luminance due to ageing, but the ratio of luminance was larger than Exit light for LED type. This is an unsatisfactory result from a visual point of view. To improve this, it is necessary to disperse the light of LED light source and strengthen the regulation on ratio of luminance.

A Study on Aerodynamic Design of a Transonic Mixed-Flow Compressor for UAV (무인항공기용 천음속 사류형 압축기의 공력 설계)

  • Choi, Jae-Ho
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.152-160
    • /
    • 2008
  • In the present paper, a transonic mixed-flow compressor that has relatively lower frontal area than that of centrifugal compressors is discussed, and aerodynamic design as well as performance prediction are performed. Main design constraints are compressor exit Mach number of 0.3 and flow angle of 30degrees at the design point, and maximum overall compressor diameter of 177mm, that is 7.0inch. The mass flow rate of design point and pressure ratio are 1.05kg/s and 5.2:1, respectively. The aerodynamic design results show that the transonic compressor designed with forward-swept inducer and curved diffuser can have the target performance with efficiency of 75% within the given constraints. And the compressor exit flow characteristics are discussed here.