• Title/Summary/Keyword: Exit hole

Search Result 128, Processing Time 0.03 seconds

Hole quality assessment of drilled CFRP and CFRP-Ti stacks holes using polycrystalline diamond (PCD) tools

  • Kim, Dave;Beal, Aaron;Kang, Kiweon;Kim, Sang-Young
    • Carbon letters
    • /
    • v.23
    • /
    • pp.1-8
    • /
    • 2017
  • Polycrystalline diamond (PCD) tools possessing high hardness and abrasive wear resistance are particularly suited for drilling of carbon fiber reinforced plastic (CFRP) composites, where tool life and consistent hole quality are important. While PCD presents superior performance when drilling CFRP, it is unclear how it performs when drilling multi-stack materials such as CFRP-titanium (Ti) stacks. This comparative study aims to investigate drilling of a Ti plate stacked on a CFRP panel when using PCD tools. The first sequence of the drilling experiments was to drill 20 holes in CFRP only. CFRP-Ti stacks were then drilled for the next 20 holes with the same drill bit. CFRP holes and CFRP-Ti stack holes were evaluated in terms of machined hole quality. The main tool wear mechanism of PCD drills is micro-fractures that occur when machining the Ti plate of the stack. Tool wear increases the instability and the operation temperature when machining the Ti plate. This results in high drilling forces, large hole diameter errors, high surface roughness, wider CFRP exit thermal damage, and taller exit Ti burrs.

Change of Heat Transfer Characteristics in a Rotating Channel of . Square Duct at Wall with Bleed Holes ( II ) - Effects of Exit Mass Flow Rate - (회전하는 사각덕트 유로에서 벽면 유출홀에 따른 열전달 특성 변화( ll ) -유출유량 변화에 따른 영향 -)

  • Kim Sang In;Kim Kyung Min;Lee Dong-Hyun;Jeon Yun Heung;Cho Hyung Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.10
    • /
    • pp.907-913
    • /
    • 2005
  • The present study has been conducted to investigate convective heat/mass transfer in the cooling passage with bleed holes. The rotating square channel has 40.0 mm hydraulic diameter and the bleed holes on the leading surface of the channel. The hole diameter of bleed hole is 4.5mm and its spacing is ( p/d:4.9) about five times of hole diameter. Exit mass flow rate through bleed holes is $0\%,\;10\%\;and\;20\%$ of the main mass flow rate respectively. rotation number is fixed 0.2. A naphthalene sublimation technique is employed to determine the detailed local heat transfer coefficients using the heat and mass transfer analogy. The cooling performance is influenced by exit mass flow rate through bleed holes and Coriolis force of rotating channel for fixed Reynolds number. The heat transfer on the leading surface is decreased due to Coriolis force. However the total heat transfer is enhanced around holes on the leading surface because of trapping flow by bleeding.

Experiment Analysis of the Burr Formation on the Inclined Exit Surface in Drilling (경사진 출구면에서 드릴 버 형성에 관한 실험적 고찰)

  • Kim, Byung-Kwon;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.47-53
    • /
    • 2006
  • An Experiment was carried out to find the scheme far minimization of burr formation on inclined exit surface in drilling. Several drills with different geometry are used for drilling the workpiece with inclined exit surface. Step drills are specified with step angle and step size. The influence of the inclination angle of exit surface on burr formation was observed, which enables to analyze the burr formation mechanism on inclined exit surface. Along the edge on the inclined exit surface, burrs are formed by the bending deflection to feed direction and also burrs are formed in exit direction of cutting edge. To minimize the burr formed in feed direction, the corner angle which is formed by the inclination angle and step angle must be large enough not to be bent to burr. By decreasing step angle of drill and decreasing the distance between two axes of two holes, burr formation at the intersecting holes can be minimized. Burr formation mechanisms are analyzed according to the drill geometries and cutting conditions. Several schemes far burr minimization on inclined exit surface were proposed.

Development of Exit Burr Identification Algorithm on Multiple Feature Workpiece and Multiple Tool Path (복합형상 및 다중경로에 대한 Exit Burr 판별 알고리듬의 개발- 스플라인을 포함한 Exit Burr의 해석 -)

  • Kim, Ji-Hwan;Lee, Jang-Beom;Kim, Young-Jin
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.247-252
    • /
    • 2005
  • In the automated production environment in the present days, the minimization of manual operation becomes a very important factor in increasing the efficiency of the production system. The exit burr produced through the milling operation on the edge of workpiece usually requires manual deburring process to enhance the level of precision of the resulting product. So far, researchers have developed various methods to understand the formation of exit burr in cutting process. One method to analytically identify the formation of exit burr was to use the geometrical information of CAD and CAM data used in automated machining. This method, in turn, generated the information resulting from the analysis such as burr type, cutting region, and exit angle. Up to now, the geometrical data were restricted to the single feature and single path. In this paper, a method to deal with the complicated geometric features such as line segment, arc, hole, and spline will be presented and validated using the field data. This method also deals with the complex workpiece shape which is a combination of multiple features. As for the cutting path, multiple tool path is analyzed in order to simulate the real cutting process. All this analysis is combined into a Windows based software and real data are used to validate the program in the conclusion.

Passage Feature Recognition Algorithm for Automatic Parting Surface Generation in Plastic Injection Mold (플라스틱 사출 금형의 분할면 자동 생성을 위한 관통 특징 형상 추출 알고리즘의 개발)

  • 정강훈;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.196-205
    • /
    • 2000
  • This paper proposes a topology-based algorithm for recognizing the passage features using a concept of multi-face hole loop. The Multi-face hole loop is a concetpual hole loop that is formed over several connected faces. A passage feature is recognized in the proposed approach by two multi-face hole loops that constitute its enterance and exit. The algorithm proposed in this paper checks the connectivity of the two multi-face hole loops to recognize passage features. The total number of passage features in a part is calculated from Euler equation and is compared with the number of found passage features to decide when to terminate. To find all multi-face hole loops in a part, this paper proposes an algorithm for finding all combinations of connected faces. The edge convexity is used to judge the validity of multi-face hole loops. By using the algorithm proposed in this paper, the passage features could be recognized effectively. The approach proposed in this paper is illustrated with several example parts.

  • PDF

An Experimental Study on the Flow at the Impeller Exit of a Centrifugal Pump (원심펌프의 회전차 출구 유동에 관한 실험적 연구)

  • Kang, Shin-Hyoung;Hong, Soon-Sam
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.234-241
    • /
    • 1999
  • The flow at the impeller exit is important to validate engineering design and numerical analysis of pumps. However, it is not easy to measure the flow at the impeller exit and evaluate the impeller performance since there is usually strong interaction between the impeller and the volute casing. We installed axisymmetric collector instead of the volute casing, so there is no interaction between the impeller and casing. A 3-hole Cobra probe is used to investigate the flow at impeller exit and vaneless diffuser region for design and on design flow rate. For a single suction centrifugal pump of low specific speed, the flow field such as velocity, flow angle, and total pressure are measured by traversing the probe across the vaneless diffuser. These data can be used for performance prediction, desist and numerical analysis of pumps.

  • PDF

Taper phenomenon of UV-laser punching process on zero-shrinkage substrate (무수축 기판 상에 UV 레이저 가공에 의한 Taper 현상)

  • Ahn, Ik-Jun;Yeo, Dong-Hun;Shin, Hyo-Soon;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.285-289
    • /
    • 2015
  • With the miniaturization with both high functionality and high integrity of the probe cards, the highly precise laser punching on the zero-shrinkage high strength substrate has attracted more attention recently. Taper occurrence during laser-punching on green sheets appears as a problem in process. The size (diameter) difference between the entrance hole and the exit hole in tapered holes appeared to be inversely proportional to the hole size itself. To suppress taper occurrence, two-stage punching was adopted as the size of second hole was varied from $70{\mu}m$ to $79{\mu}m$ when punching $80{\mu}m$ via holes on the substrate with thickness of $380{\mu}m$. The minimal taper ratio of 11.9 % appeared with second hole size between 70 to $79{\mu}m$ before sintering. Taper ratio reduced to 7 % after zero-shrinkage sintering. The size difference between first hole and second hole appeared minimal when the size of second hole was 95~97 % to that of first hole.

The Exit Hole Burr Generation of CFRP with Ultrasonic Vibration (초음파 진동에 따른 CFRP의 출구 구멍 버 생성)

  • Won, Sung-Jae;Li, Ching-Ping;Park, Ki-Moon;Ko, Tae Jo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.134-140
    • /
    • 2017
  • CFRP has many industrial applications due to its low weight and high strength properties. CFRP is a composite material composed of carbon fibers embedded in a polymer matrix; it provides excellent resistance to fatigue wear, corrosion, and breakage due to fatigue. It is increasingly demanded in aircraft, automotive, and medical industries due to its superior properties to aluminum alloys, which were once considered the most suitable for specific applications. The basic machining methods of CFRP are drilling and route milling. However, in the case of drilling, the delamination of each layer, uncut fiber, resin burning, spalling, and exit burrs are barriers to successful application. This paper investigates the occurrence of exit burrs when drilling holes with ultrasonic vibration. Depending on design parameters such as the point angle, the characteristics of hole drilling were identified and appropriate machining conditions were considered.

A Study on the Drilling Performance of the Assembly Machine for the an Aircraft's Main Wings (항공기 주익 조립 장비의 드릴링 성능에 관한 연구)

  • Hong, Seong-Min;Park, Dae-Hun;Han, Sung-Gil;Song, Chul-Ki
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.1
    • /
    • pp.8-15
    • /
    • 2018
  • Recently, the manufacturing market for low-cost airlines has led to an increase in aircraft demand. Most processes in the production of these aircrafts are manual such as drilling, sealing, and swaging. A drilling and riveting machine is a numerical-control based equipment that automatically performs drilling, sealing, and swaging operations. The accuracy of the drilled holes and the exit burr length has a significant impact on the quality of the aircraft wing during assembly. This study was conducted to identify the conditions necessary to maintain a uniform quality by controlling the rotation speed of the spindle, which directly affects the hole diameter and the quality of the exit burr.

Comparative Study on the Film Cooling Effectiveness of 15° Angled Anti-Vortex Hole and 30-7-7 Fan-Shaped Hole Using PSP Technique (PSP를 이용한 15° 반와류 홀과 30-7-7 팬형상 홀의 막냉각 효율 비교 연구)

  • Kim, Ye Jee;Park, Soon Sang;Rhee, Dong Ho;Kwak, Jae Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.4
    • /
    • pp.13-18
    • /
    • 2016
  • The various film cooling hole shapes have been proposed for effective external cooling of gas turbine blade. In this study, the film cooling effectiveness by three different hole shapes (cylindrical hole, $15^{\circ}$ angle anti-vortex hole, 30-7-7 fan-shaped hole) were examined experimentally. Pressure Sensitive Paint (PSP) technique was used to measure the film cooling effectiveness. The coolant to mainstream density ratio was 1.0 and three blowing ratios of 0.5, 1.0, and 2.0 were considered. Results clearly showed that the effect of hole shape on the distribution of film cooling effectiveness. For the cylindrical hole case, the film cooling effectiveness decreased remarkably as the blowing ratio increased due to the jet lift off. Because of large hole exit area and low coolant momentum, the 30-7-7 fan-shaped hole case showed the highest film cooling effectiveness at all blowing ratio, followed by the anti-vortex hole case.