• Title/Summary/Keyword: Existing tunnel

Search Result 638, Processing Time 0.019 seconds

Development and Performance of Cementitious Materials for Fire Resistance of Tunnel (터널 내화용 시멘트계 재료의 개발 및 성능 평가)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.265-273
    • /
    • 2006
  • This study aims at evaluation of the fire resistance performance of cementitious materials for fire protection of tunnel. For this purpose, the research procedure was divided into three parts. First, base mix proportion with different material type were determined by fire test. Second, the fire test of cementitious materials for fire resistance were performed on base mix proportions to evaluated their performance. Third, the performance of cementitious materials for fire resistance compare to the target value and existing commercial products. If the performance of developed cemetitious materials for fire resistance were satisfied the target value, this studies were stopped. But, this research return to first process if the performance of cementitious materials for fire resistance are not satisfied the target value. As a result of this study, the spalling did not happen for develop and existing commercial product. Also, developed cementitious materials for fire resistance are shown with excellent compressive strength, flexural strength, and bond strength, because it used a height density aggregate. And developed cementitious materials has sufficient resistance for fire.

Rationalization of Gripper TBM Supporting System Pass through Serviced Subway Line (기존 운행선 직하부 통과 굴착에 따른 Gripper TBM 지보패턴 합리화 방안)

  • Hak-Young So;Kook Hwan Cho
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.413-420
    • /
    • 2024
  • When planning gripper TBM, which is highly applicable to urban areas, the excavation characteristics are not considered. In addition the excavation stability and constructability are degraded by installing reinforcements in the adjacent construction site considering the relaxation load theory of the pre-existing NATM. In this study, a rationalization plan for the support was proposed considering the excavation characteristics of gripper TBM when planning reinforcements for adjacent pre-existing construction. The effect of excavation on the surrounding ground was analyzed by conducting three-dimensional stability analyses considering the construction stage for each excavation phase. In NATM, relaxation phenomenon is concentrated in tunnel face due to non-supporting time occurring simultaneously with excavation, but gripper TBM supports the ground around the tunnel face through the cutter head and skin plate, simultaneously causing ground relaxation behind the skin plate. Considering these excavation characteristics, problems in reinforcement planning for adjacent construction at the study site were pointed out. A performance improvement plan for a reasonable supporting system was proposed.

Evaluation of Reinforcement Effect of Rock Bolts in Anisotropic Rock Mass Using Tunnel Scaled Model Tests (터널 축소모형실험을 통한 이방성 암반내 록볼트의 보강효과 검토)

  • Kim, Jong-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.442-456
    • /
    • 2018
  • Scaled model tests were performed to evaluate the reinforcement effect of rock bolts in anisotropic rock mass. For this purpose, two tunnel cases were experimented which had different tunnel sizes, rock strengths, anisotropic angles and coefficients of lateral pressure. The fully grouted rock bolts of the D25 deformed bar were modeled as the basting pins with bead and were systematically installed at the roof and the side wall of the model tunnel. As results of the first case experimentations, the unsupported model showed initial crack at the roof of tunnel, but the supported model with rock bolts showed initial crack at the floor of tunnel where rock bolts were not installed. The crack initiating pressure and the maximum pressure of the supported model with rock bolts were 11% and 7% larger than those of the unsupported model, respectively. Moreover, the effect of the existing discontinuities in anisotropic rock mass on the fracture behavior of tunnel was reduced in the supported model, and so the reinforcement effect of rock bolt turned out to be experimentally verified. As results of the second case experimentations considering different support patterns, the crack initiating pressures of models were larger and the reduction ratios of tunnel area according to applied load were smaller as the length and the quantity of rock bolts were larger. Therefore, it was found that the performance of the rock bolts turned out to be improved as they were larger.

Development of a programming logic to estimate the wall friction coefficient in vehicle tunnels with piston effects (교통환기력이 작용하는 터널 내 벽면마찰계수 추정을 위한 프로그램 로직 개발)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Young-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2018
  • Generally, the total ventilation resistance coefficient in a tunnel consists of inlet/outlet loss coefficient, wall friction coefficient, and other loss coefficient caused by sudden expansion and contraction of cross-section, etc. For the tunnel before opening, when the running ventilation fan is stopped, the wind speed in the tunnel is reduced by the total ventilation resistance drag. The velocity decay method is comparatively stable and easy to estimate the wall friction coefficient in the pre-opening tunnel. However, the existing study reported that when the converging wind speed is a negative value after the ventilation fan stops, it is difficult to estimate the wall friction coefficient according to the velocity decay method. On the other hand, for the operating tunnel in which the piston effect acts, a more complex process is performed; however, a reasonable wall friction coefficient can be estimated. This paper aims at suggesting a method to minimize the measurement variables of the piston effect and reviewing a method that can be applied to the operating tunnel. Also, in this study, a new method has been developed, which enables to calculate an variation of the piston effect if the piston effect is constant with a sudden change of external natural wind occurring while the wind speed in the tunnel decreases after the ventilation fan stops, and a programming logic has been also developed, which enables dynamic simulation analysis in order to estimate the wall friction coefficient in a tunnel.

Feedback Analysis Technique for Tunnel Safety by Using Displacements Measured during the Tunnel Excavation (터널굴착변위를 활용한 시공중 피드백 해석기법 연구)

  • Park, Si-Hyun;Shin, Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.81-89
    • /
    • 2008
  • The purpose of this study is to develop a new technique to quickly assess the quantitative stability of a tunnel by using measured displacement at the tunnel construction site. To achieve this purpose, in this study, a critical strain concept was introduced for the first time and applied to an assessment of a tunnel under construction. The new technique calculates numerically the strains of the surrounding ground by using displacements measured during tunnel excavation. The techniques considering the relative displacement, shotcrete, and anisotropic characteristics of ground were newly introduced after reinvestigating the existing analysis technique. In addition, an analysis module was developed based on the proposed analysis technique in this study, and the applicability of the developed module was verified. To verify the module, first of all, the calculated excavation displacements of a cylindrical tunnel by analytic method and commercial programs (Pentagon-3D, Flac-2D) were compared for the confirmation of applicability of commercial programs. Then, the calculated excavation displacements under the same initial condition, both with and without a shotcrete lining, by two commercial programs were compared. finally, we assess the load condition and material properties of in-situ ground by inputting tunnel excavation displacement, which was calculated by a commercial program, into the developed analysis module (FAST-Ver. 1.2, feedback Analysis System for Tunneling), and checked whether the assessed results conform to the originally assumed values.

A Study on the Stability of Twin Tunnels in Anisotropic Rocks Using Scaled Model Tests (이방성 암반내 쌍굴터널의 안정성에 대한 모형실험 연구)

  • Kim, Jong-Woo;Kim, Myeong-Kyun
    • Tunnel and Underground Space
    • /
    • v.22 no.3
    • /
    • pp.205-213
    • /
    • 2012
  • In this study, scaled model tests were performed to investigate the stability of twin tunnels constructed in anisotropic rocks with $30^{\circ}$ inclined bedding planes under the condition of lateral pressure ratio, 2. Five types of test models which had respectively different pillar widths and shapes of tunnel sections were experimented, where both crack initiating pressures and deformation behaviors around tunnels were investigated. The models with shallower pillar width showed shear failure of pillar according to the existing bedding planes and they were cracked under lower pressure than the models with thicker pillar width. In order to find the effect of tunnel sectional shape on stability, the models with four centered arch section, circular section and semi-circular arch section were experimented. As results of the comparison of the crack initiating pressures and the deformation behaviors around tunnels, the semi-circular arched tunnel model was the most unstable whereas the circular tunnel model was the most stable among them. Furthermore, the results of FLAC analysis were qualitatively coincident with the experimental results.

A study on the deterministic temperature-time curves and required resistance times by fire model for assessment of fire resistance of tunnel structures (터널의 내화성능 평가용 화재온도곡선과 화재모델별 내화시간에 대한 고찰)

  • Kim, Hyo-Gyu;Park, Kyung-Whan;Yoon, Myong-O;Lee, Chang-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.2
    • /
    • pp.165-176
    • /
    • 2005
  • A variety of research projects have been undertaken due to the recent catastrophic tunnel fires throughout the world, Among them, more emphasis was given to full scale and scale model fire experiments, and recently the area of fire resistance of tunnel structures attract more interests, On the contrary to the cases in most of the advanced countries where design standards as well as recommendations have already been announced, no local criteria for design can be found, This paper aims at deriving the fire characteristics appropriate for the assessment criteria of fire resistance of structures in local tunnels through studying the existing fire temperature curves including ISO 834 standard temperature curve, HC curve, RWS curve, ZTV curve and EBA curve.

  • PDF

Economical aessesment of long tunnel route complex geological formations (복잡한 지질구조암반층에서의 장대터널노선 선정을 위한 경제성 평가에 대한 연구)

  • Kim, Sang-Hwan;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.239-247
    • /
    • 2005
  • A new railway line of about 17km length was planned between Dongbaeksan and the neighboring town Dokye to improve the existing decrepit railway system. New line about 17km of the distance will almost be in circular alignment tunnels owing to the difference of elevation about 380m. Since the geology of the area is rather unusual compared to the normal in South Korea, extensive geological investigations have been carried out to prepare geological maps and profiles along the planned tunnel routes. The tunnel will almost be in sedimentary rock formations, such as limestone, sandstone, shale, coal etc and be near abandoned mines Various rock formations have the complicated, alter ed those rocks, but are well developed with laminated formations. Each rock formations have been classified using the Q-system and the cost of tunnel excavation, support has been estimated and compared for three alternative routes in the design stage. Based on these estimates, the final route of t he railway line was chosen.

  • PDF

A Study of Economic Aspects on 3-D Scanning Measurement during Tunnel Construction (3차원 스캔을 이용한 터널계측의 경제성에 관한 연구)

  • Choi, Won-Il;Park, Geun-Young;Cho, Kook-Hwan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.77-81
    • /
    • 2010
  • D&B(Drill & Blast) method in tunnel construction requires accurate and rapid measurement of the ground movement, which is essential for feedback analysis. Case study and adaptability of IT technique for tunnel survey are discussed in this paper. The application of laserscannig and existing light wave instrument method in the field of tunnel construction were reported in several advanced country including Austria and Japan. Survey for the shoulder movements by IT survey method was conducted at a subway construction site and the results were compared to the conventional method. Also, the economic aspects of laserscannig method were analyzed using measured data which were categorized by expenses, frequency, interval and period in the field of construction. Therefore IT survey solution may contribute to execute more economic and safe construction

A study on the fire resistance method using FR-ECC in long tunnel (고인성내화모르터(FR-ECC)를 사용한 장대터널 내화안전대책에 관한 연구)

  • Kim, Se-Jong;Kim, Dong-Jun;Kwon, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.1
    • /
    • pp.9-18
    • /
    • 2011
  • The spalling phenomenon occurs in high-strength concrete when several factors such as sharp temperature increase, high water content, low water/cement ratio and local stress concentration in material combine in the concrete material. On the basis of the factors, the preventing methods from the spalling are known as reduction of temperature increase, preventing of concrete fragmentation and fast drying of internal moisture. In this study, the reduction of temperature increase was proposed as the most effective spalling-preventing method among the spalling-preventing methods. Engineered cementitious composite for fireproof and repair materials was developed in order to protect the new and existing RC structures form exterior deterioration factors such as fire, cloride ion, etc. This study was carried out to estimate the fire-resisting performance of high strength concrete slab or tunnel lining by repaired engineered cementitious composite (ECC) or fiber reinforcement cemetitious composite (FRCC) under fire temperature curve. and them we will descrike the result of HIDA tunnel in Japan.