• Title/Summary/Keyword: Exhausting gas

Search Result 34, Processing Time 0.029 seconds

The Effect of Mass Transfer on the Cure Properties of the Urea Resin Moulding Compounds Under the Drying Process (건조 공정 중 요소 수지 성형재료의 경화 특성에 대한 물질전달 효과)

  • Kim, Sang Yeul;Choi, Il Gon;Kim, Byoung Chul
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.681-686
    • /
    • 2002
  • In the industrial field, the theory of drying process is different from the practical application, and it is effective to reduce energy by recirculation of the heat of exhausting gas. But the study of this field may not be performed still. The cure properties of the urea resin moulding compounds was investigated according to drying temperature, drying time, recycle rate of exhausting gas and moulding temperature in the process of drying and moulding. We obtained the following results; water content of material decreases with increasing drying time and drying temperature, and the rate of drying also decreases with increasing recycle rate of exhausting gas. Specially, The cure fluidity of the urea resin moulding compounds decreases, with increasing drying temperature, recycle rate of exhausting gas and moulding temperature. And the correlation equations on water content and cure fluidity of the urea resin moulding material were obtained through a regression analysis of experimental data.

Development of Combustion Diagnostic System for Reducing the Exhausting Gas (배기가스 저감을 위한 연소진단 시스템의 개발)

  • Lee, Tae-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.4
    • /
    • pp.403-411
    • /
    • 2001
  • A criterion for evaluation of burners has changed recently, and the environmental problems are raised as a global issue. Burners with higher thermal efficiency and lower oxygen in the exhaust gas, evaluated better. To comply with environmental regulations, burners must satisfy the $NO_x$ and CO regulation. Consequently. 'good burner' means one whose thermal efficiency is high under the constraint of $NO_x$ and CO consistency. To make existing burner satisfy recent criterion, it is highly recommended to develop a feedback control scheme whose output is the consistency of $NO_x$ and CO. This paper describes the development of a real time flame diagnosis technique that evaluate and diagnose the combustion states, such as consistency of components in exhaust gas, stability of flame in the quantitative sense. In this paper, it was proposed on the flame diagnosis technique of burner using Neuro- Fuzzy algorithm. This study focuses on the relation of the color of the flame and the state of combustion. Neuro- Fuzzy learning algorithm is used in obtaining the fuzzy membership function and rules. Using the constructed inference algorithm, the amount of $NO_x$ and CO of the combustion gas was successfully inferred.

  • PDF

Temperature Distributions inside a Space Heater for Greenhouse (I) - Temperature Characteristics with Heating Oil - (시설원예용 온풍난방기내의 온도분포에 관한 연구 (I) - 난방유 사용시 온도특성 -)

  • 서정덕;김종진;최규성;신창식;노수영
    • Journal of Biosystems Engineering
    • /
    • v.24 no.4
    • /
    • pp.335-342
    • /
    • 1999
  • Air and flue gas temperature distributions in the space heater for greenhouse were measured to develop a thermal design technology for the space heater. Also, the characteristics of the fan supplying air to the space heater were investigated. The temperature of the flue gas inside the flue gas tube was linearly decreased as the lenght of than those of the flue gas with the oxygen concentration of 8.25% at the last exit of the second flue gas tube. Thus, the operating efficiency of the space heater could be increased with low air ratio decreased exhausting gas temperature and saved the energy consumption with decreased excess air flow. The temperature of the air supplied by fan was increased slowly around the first flue gas tube, meanwhile, increased sharply around the second flue gas tube due to large LMTD (Logarithmic Mean Temperature Difference) at the first flue gas tube than which of the second flue gas tube.

  • PDF

Development of Combustor for Combustible Hazardous Gas (가연성 유해가스 처리를 위한 연소기 개발)

  • 전영남;채종성;김미환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.4
    • /
    • pp.479-485
    • /
    • 1996
  • Volatile organic compounds are air pollutants exhausting from industrial process, evaporation of solvent, and so on. Most of VOCs are the combustible gas of low calorific value as it is diluted by air. The systems burning such a hazardous gas need to increase enthalpy in order to increase flame stability. In this study an incinerator with reciprocating flow in the honeycomb ceramic has been used for the experiment of VOCs control. By the reciprocating flow system, the enthalpy of combustion gas is effectively regenerated into the enthalpy increases of the combustible gas through the honeycomb ceramic, which provides a heat storage. The position of the reaction zone is strongly dependent on the parameters of mixture velocity and time frequency. Flame front is changed to the point where burning velocity is coincided with burning velocity in the honeycomb ceramic. In this system it is important that flame front should be located symmetrically at the center of honeycomb ceramic for the purpose of increasing the reaction rate at one point. Peak temperature becomes higher with decreasing time frequency, at which the flow direction is regularly reversed.

  • PDF

The manufacturing Process Improvement usung Display of high VacuumExhausted Sealing Equipment by Tipless Manner (Tipless 방식에 의한 디스플레이 고진공 배기 밀봉장치 개발에관한 공정개발연구)

  • 김수용;박승곤;정원채
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.817-820
    • /
    • 2001
  • This machine is a high-vacuum exhaust sealing device which makes the inside of PDP element in high vacuum state, blows inactive gases into it and finally seals it. This machine consists of vacuuming parts, heating parts and exhausting parts. Applying the energy saving technology, this machine improves the temperature uniformity of vacuuming and heating parts.

  • PDF

A study on engine performance of EGR valve problem in Hybrid vehicles (하이브리드 자동차의 EGR 밸브 오작동 시 엔진 성능에 미치는 영향)

  • Song, Rak Hyun;cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, Air pollution is gradually increasing which are coming from the exhaust of the ICE vehicles in the world. ICE vehicle exhaust gas and $CO_2$ are widely suspected of contributing to the called greenhouse effect, fueling fears of global warming. Therefore, many countries are striving to decrease the vehicle exhaust gas and have developed a variety of policies as air pollution regulation plans. To comply with the regulations, automotive industry has developed hybrid vehicles, which have features of both ICE vehicles and electric vehicles. Hybrid car is eco-friendly and has lowered exhausting gases and improved fuel efficiency. This research has been written to show that break down cases with EGR valve in hybrid cars, steadily increasing in use, and to help with on-site maintenance.

An effect of ignition timing on exhausting property of LPG Engine (점화시기가 LPG 엔진의 배기특성에 미치는 영향)

  • Han, Duck-Su;Jang, Young-Min;Chun, Bong-Jun;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.39-46
    • /
    • 2006
  • As an automobile fuel, LPG has many environmental advantages compared to gasoline or diesel. However, current LPG engine which is provided with LPG fuel as gas form has lower power and worse fuel efficiency than gasoline engine. These problems of low power and bad fuel efficiency come from lower volumetric efficiency. Also there is a new rising problem of high failure ratio in an engine emission test. Although there are many factors which affect engine performance of exhaust gas emission, one believes that the fact that ECM of gasoline engine is used for LPG engine when retrofitting gasoline engine to LPG engine is one of the main problems, which lower engine power and emit more noxious gas due to wrong ignition timing. To solve these problems, one studied the effects of ignition timing on the exhaust gas to find out the optimum condition of ignition timing. The experimental results show that noxious exhaust gas is reduced and engine power is increased if the optimum control of ignition timing is applied in accordance to the revolution speed of engine.

  • PDF

The Characteristics of Swirl Spray Combustion in Gas Turbine Combustor (가스터빈 연소기내의 선회분무연소 특성)

  • Hong, Jeong-Gu;Kim, Hyeok-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2721-2730
    • /
    • 1996
  • The present study conducted experimental study of spray combustion to investigate the effect of the inlet conditions of fuel and air on the flame structure, the flame stability and the characteristics of emission in the can-type model of a gas turbine combustor. In the experiment, the diameter of fuel droplet was measured using Malvern particle size analyser and temperatures in the combustion chamber were measured with R-type shielded thermocouple. In addition, flame structure was taken picture with camera and analysed. Gas analyser was also used to analyse the concentration of each components of exhausting gas. The experimental results showed that the flame condition was optimal with swirl number, 0.63 and equivalence ratio, 0.5 for controlling the flame stability, the combustion temperature and the NOx concentration. The present study concluded that both the flame structure and the emission formation were strongly affected by the swirl intensity, which selection was found as an important parameter for either stabilizing flame or lowering the quantity of NOx.

Fabrication and Characterization of Portable Electronic Nose System using Gas Sensor Array and Artificial Neural Network (가스센서 어레이와 인공 신경망을 이용한 소형 전자코 시스템의 제작 및 특성)

  • 홍형기;권철한;윤동현;김승렬;이규정
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.99-102
    • /
    • 1997
  • An electronic nose system is an instrument designed far mimicking human olfactory system. It consists generally of gas (odor) sensor array corresponding to olfactory receptors of human nose and artificial neural network pattern recognition technique based on human biological odor sensing mechanism. Considerable attempts to develop the electronic nose system have been made far applications in the fields of floods, drinks, cosmetics, environment monitoring, etc. A portable electronic nose system has been fabricated by using oxide semiconductor gas sensor array and pattern recognition technique such as principal component analysis (PCA) and back propagation artificial neural network The sensor array consists of six thick film gas sensors whose sensing layers are Pd-doped WO$_3$ Pt-doped SnO$_2$ TiO$_2$-Sb$_2$O$_3$-Pd-doped SnO$_2$ TiO$_2$-Sb$_2$O$_{5}$-Pd-doped SnO$_2$+Pd filter layer, A1$_2$O$_3$-doped ZnO and PdCl$_2$-doped SnO$_2$. As an application the system has been used to identify CO/HC car exhausting gases and the identification has been successfully demonstrated.d.

  • PDF

Thermodynamic Analysis on Hybrid Molten Carbonate Fuel Cell - Turbo Expander System for Natural Gas Pressure Regulation (용융탄산염연료전지와 터보팽창기를 이용한 천연가스 정압기지의 열역학적 분석)

  • Sung, Taehong;Kim, Kyung Chun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.2
    • /
    • pp.28-34
    • /
    • 2014
  • In the natural gas pressure regulation station, high pressure natural gas is decompressing using pressure regulation valves. Waste pressure occurred in the pressure regulation process can be recovered through adopting turbo expanders. However, in the waste pressure recovery process, Joule Thompson effect causes below $0^{\circ}C$ and this low temperature freezes outside land of pipeline or generates methane hydrate in the pipeline which can block the pipeline. Therefore, turbo expander systems are accompanying with a boiler for preheating natural gas. Molten carbonate fuel cell (MCFC), one of the high temperature fuel cell, can use natural gas as a direct fuel and is also exhausting low emission gas and generating electricity. In this paper, a thermodynamic analysis on the hybrid MCFC-turbo expander system is conducted. The fuel cell system is analyzed for the base load of the hybrid system.