• Title/Summary/Keyword: Exhaust gases

Search Result 287, Processing Time 0.028 seconds

An Experimental Study on Annulus Muffler of Automobile (자동차용 환상형 소음기에 관한 실험적 연구)

  • Kim, Byoung-Sam;Song, Kyu-Keun;Sim, Sang-Cherl;Cheong, Byeong-Kuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.217-222
    • /
    • 2006
  • Internal combustion engine is the main source of environmental pollutants and therefore advanced technology is required to reduce harmful elements from the exhaust gases all over the world. Especially, when the exhaust gas is released front the automotive muffler, exhaust noise has many bad influence on the surrounding environment. In order to reduce the exhaust noise, it is necessary that automotive muffler must be designed for best exhaust efficiency. The sound insulation room was installed for the analysis of an acoustics characteristics of the noise from automotive muffler, in this study. Exhaust gas noise, noise distribution characteristics, pressure and temperature of exhaust gas were investigated with the change of annulus temperature of air cooled annulus automotive muffler and cooled annulus automotive muffler. The following results were obtained with this study. From the frequency analysis of automotive muffler, high noise distribution was observed in the range $100{\sim}2000Hz$. It means that the noise in this range has an dominate influence for the overall noise. Noise reduction of automotive muffler was affected by the temperature of annulus. It is caused the result that the high temperature and pressure of exhaust gas are changed lower by the drop of annulus temperature. The tendencies of noise, the temperature and pressure of exhaust gas are similar to the performance curve of engine. Exhaust gas pressure is determined by the r.p.m. of engine and affected by the cooling performance of automotive muffler.

  • PDF

Estimation of Hydrocarbon Oxidation by Measuring He Concentrations in an SI Engine Exhaust Port (프로판 엔진의 배기 포트에서 탄화수소 산화율 추정)

  • Yi, Hyung-Seung;Park, Jong-Bum;Min, Kyoung-Doug;Kim, Eung-Seo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.660-667
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, concentrations of individual HC species were measured in exhaust process, the degree of oxidation were obtained. Using a solenoid-driven fast sampling system on single-cylinder research engine fueled with 94% propane, the profiles of unburned hydrocarbons (HCs) and non-fuel HCs with a propane fueled engine were obtained from several locations in the exhaust port during the exhaust process. The sampled gases were analyzed using a gas chromatography of HC species with 4 or lesser carbon atoms. The change of total HC concentration and HC fractions of major components through the exhaust port were discussed. The results showed that non-uniform distribution of HC concentration existed around the exhaust valve and changed with time, and that the exhaust gas exhibited nearly uniform concentration profile at port exit, which was due to mixing and oxidation. Also it could be known that bulk gas with relatively high HC concentration came out through the bottom of the exhaust valve. To estimate the mass-based degree of HC oxidation in the exhaust port from measured HC concentrations, a 3-zone diagnostic cycle simulation and plug flow modeling were used. The degree of oxidation ranged between 26 % and 36 % corresponding to the engine operation conditions.

The removing characteristic of harmful exhaust from a motorcycle using non-thermal plasma (플라즈마를 이용한 이륜자동차 배출가스저감 특성)

  • Kim, Young-Ju;Park, Hong-Jae;Jung, Jang-Gun;Lee, Jae-Dong;Park, Jae-Yoon;Koh, Hee-Seog
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.1127-1130
    • /
    • 2003
  • In the last several centuries, humankind have been experienced the material abundance with a development of technical civilization and being industrialized quickly. During the process of this, environmental pollutant have occurred naturally so that humankind have more interests for environment pollutant. Air pollution caused by exhaust from a car is very harmful for human. Most of exhaust from a gasoline engine are $CO_x(CO+CO_2),\;NO_x(NO+NO_2)$, and THC(Total Hydrocarbon). The method to remove these kinds of noxious gases are so many thing such as the three catalysts, $NO_x$ catalysts, Filter and so on. However, although air pollution caused by exhaust from motorcycle have also occurred very much, there is no regulation for motorcycle. In this paper, we studied to remove $CO_x(CO+CO_2),\;NO_x(NO+NO_2)$, THC exhaust from a motorcycle using non-thermal plasma In the result, $NO_x(NO+NO_2)$ concentration was decreased approximately 70% and THC(Total Hydrocarbon) was removed about 40%.

  • PDF

Analysis of dew point and corrosion resistance for power plant economizer tube with exhaust gas temperature and sulfuric acid concentration (발전소 절탄기 튜브의 배기가스 온도와 황산 농도에 따른 노점 및 내식성 분석)

  • Choi, Jae-Hoon;Lee, Seung-Jun
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.433-440
    • /
    • 2022
  • Environmental pollution caused by power plant exhaust gas is highlighted and eco-friendly regulations are being strengthened. However, due to the abundant reserves and low prices of coal, still the most used for power generation in the world. Therefore, flexible operation of coal-fired power plants to reduce emissions has become an inevitable option. However, lowering the output increases the possibility of acid dew point corrosion as the exhaust gas temperature decreases. The dew point corrosion occurs when condensable gases such as SO3, HCl, NO2 and H2O cools below the saturation temperature. SO3 is already well known to cause severe low- temperature corrosion in coal-fired power plants. Therefore, this study aims to prevent damage that may occur during operation by analyzing the dew point and corrosion resistance with exhaust gas temperature and sulfuric acid concentration of the power plant economizer tube.

Analysis of Corrosion Resistance and Dew Point with Exhaust Gas Concentration and Temperature for Air Preheater Materials in Power Plants (발전소 공기예열기 소재의 배기가스 농도 및 온도에 따른 내식성 및 노점 분석)

  • Seung-Jun Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.5
    • /
    • pp.351-358
    • /
    • 2023
  • Although many thermal power plants use heat recovery systems, high exhaust gas temperatures are maintained due to corrosion at dew points and ash deposits caused by condensate formation. The dew point of exhaust gas is primarily determined by the concentration of SO3 and steam, and various experiments and calculation equations have been employed to estimate it. However, these methods are known to be less suitable for exhaust gases with low SO3 concentrations. Therefore, in this study, since the temperature of the exhaust gas is expected to decrease due to the low-load operation of the coal-fired power plant, sulfuric acid condensation and low-temperature corrosion are anticipated. We aimed to conduct a quantitative evaluation to propose ways to prevent damage by limiting operating conditions and improving facilities. The experimental results showed that the corrosion rate increased linearly with rising temperatures at a certain sulfuric acid concentration. Furthermore, variations in sulfuric acid concentrations generated during the current power plant operation process did not significantly affect the dew point, and the dew point of sulfuric acid under these conditions was observed to be between 120 - 130 ℃.

Analysis on the Combustion Characteristics of Low-Btu Synthetic Gases in Gas Engine (저발열량 합성가스의 가스엔진 내 연소 특성에 대한 해석)

  • Lee, Chan;Cho, Sang Mok
    • Clean Technology
    • /
    • v.12 no.2
    • /
    • pp.78-86
    • /
    • 2006
  • Computational analyses are conducted on the combustion characteristics of the coal- and the biomass-derived synthetic gases with low-Btu heating value in gas engine. Using thermochemical analyses on the synthetic gases, combustion pressure, temperature, exhaust gas composition, NO emission and engine power are predicted and the predicted results are compared with small-scale pilot engine test results. In order to investigate the unsteady combustion phenomena in gas engine combustion chamber, CFD analyses are carried out on the coal and the biomass synthetic gases and their computed results are compared to provide the guidelines for the design modification and the tuning of the gas engine burning the synthetic gases as alternative fuels.

  • PDF

Development of High Sensitive Integrated Dual Sensor to Detect Harmful Exhaust Gas and Odor for the Automotive (악취분별능력을 가진 자동차용 고기능 듀얼타입 집적형 유해가스 유입차단센서 개발)

  • Chung, Wan-Young;Shim, Chang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.616-623
    • /
    • 2007
  • A dual micro gas sensor array was fabricated using nano sized $SnO_2$ thin films which had good sensitivities to CO and combustible gases, or $H_2S$ gas for air quality sensors in automobile. The already existed air quality sensor detects oxidizing gases and reducing gases, the air quality sensor(AQS), located near the fresh air inlet detected the harmful gases, the fresh air inlet door/ventilation flap was closed to reduce the amount of pollution entering the vehicle cabin through HVAC(heating, ventilating, and air conditioning) system. In this study, to make $SnO_2$ thin film AQS sensor, thin tin metal layer between 1000 and $2000{\AA}$ thick was oxidized between 600 and $800^{\circ}C$ by thermal oxidation. The gas sensing layers such as $SnO_2$, $SnO_2$(pt) and $SnO_2$(+CuO) were patterned by metal shadow mask for simple fabrication process on the silicon substrate. The micro gas sensors with $SnO_2$(+Pt) and $SnO_2$(CuO) showed good selectivity to CO gas among reducing gases and good sensitivity to $H_2S$ that is main component of bad odor, separately.

Identification of Gas Mixture with the MEMS Sensor Arrays by a Pattern Recognition

  • Bum-Joon Kim;Jung-Sik Kim
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.235-241
    • /
    • 2024
  • Gas identification techniques using pattern recognition methods were developed from four micro-electronic gas sensors for noxious gas mixture analysis. The target gases for the air quality monitoring inside vehicles were two exhaust gases, carbon monoxide (CO) and nitrogen oxides (NOx), and two odor gases, ammonia (NH3) and formaldehyde (HCHO). Four MEMS gas sensors with sensing materials of Pd-SnO2 for CO, In2O3 for NOX, Ru-WO3 for NH3, and hybridized SnO2-ZnO material for HCHO were fabricated. In six binary mixed gas systems with oxidizing and reducing gases, the gas sensing behaviors and the sensor responses of these methods were examined for the discrimination of gas species. The gas sensitivity data was extracted and their patterns were determined using principal component analysis (PCA) techniques. The PCA plot results showed good separation among the mixed gas systems, suggesting that the gas mixture tests for noxious gases and their mixtures could be well classified and discriminated changes.

An Experimental Study on Performance and Exhaust Gas in a Heavy-Duty Diesel Engine with Cooled-EGR (Cooled-EGR 대형디젤기관의 성능 및 배기가스에 관한 실험적 연구)

  • 한영출;오용석;오상기
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.1-8
    • /
    • 2001
  • It is a present situation that the control on automobile emission is getting more restrictive and also the regulations for emission are changing greatly up to level of those advanced foreign countries. Specially, it has been many years that exhaust gases from gasoline automobile rather than from diesel is the major object concerned by Korea and other countries, and it is strongly required on the reduction techniques on harmful NOx and PM among those compositions. Thus, this research focused on the Exhaust Gas Recirculation (EGR) and the target for this research is heavy-duty turbo-diesel engine with Cooled EGR. Furthermore, this research has been made efforts to accomplish the regulation on emission for heavy duty diesel engine.

  • PDF

EXPERIMENTAL STUDY ON EMISSION CHARACTERISTICS AND ANALYSIS BY VARIOUS OXYGENATED FUELS IN A D.I. DIESEL ENGINE

  • CHOI S. H.;OH Y. T.
    • International Journal of Automotive Technology
    • /
    • v.6 no.3
    • /
    • pp.197-203
    • /
    • 2005
  • This paper investigates the effect of oxygen composition in mixed fuel on the exhaust emissions for the direct injection diesel engine. These effects were tested to estimate the change in engine performance and exhaust emission characteristics when commercial diesel fuel and oxygenates blended fuels at a certain fuel and mixed ratio are used. Individual hydrocarbons $(C_1-C_6)$ in exhaust gases, as well as the total amount of hydrocarbons, were analyzed by using gas chromatography to find the mechanism by which smoke emission was remarkably reduced for various oxygenated fuels. The chromatograms between a diesel fuel and a diesel fuel blended DGM (diethylene glycol dimethyl ether), MTBE (methyl tert-butyl ether) and EGBE (ethylene glycol mono-n-butyl ether) were compared. The results showed that the number of individual hydrocarbons as well as the total number of hydrocarbons of oxygenated fuel reduced more remarkably than those of diesel fuel.