• 제목/요약/키워드: Exhaust gases

검색결과 287건 처리시간 0.024초

파티클보드의 열압으로부터 포름알데히드 배출량 조사 (Examination of Formaldehyde Emissions from the Hot-Pressing of Particleboard)

  • 오용성;곽준혁
    • Journal of the Korean Wood Science and Technology
    • /
    • 제29권4호
    • /
    • pp.33-39
    • /
    • 2001
  • 포름알데히드와 요소의 몰비가 다른 2종류의 요소수지 접착제를 이용하여 접착제 첨가량과 열압시간 등 여러 조건에서 실험실 파티클보드를 열압하는 동안 배출되는 가스를 중류수에 용해 포집하고, 이렇게 얻어진 용액으로부터 포름알데히드 배출량을 미국 National Institute of Occupational Safety and Health (NIOSH) 3500의 방법에 의해 분석 비교하였다. 평가된 결과는 파티클보드를 열압하는 동안 배출되는 가스 중에서 포름알데히드량은 요소수지의 종류, 접착제 첨가량과 열압시간에 의해서 영향을 받는다는 것을 보여준다.

  • PDF

석탄가스 고압연소시 배기가스 배출특성에 관한 실험적 연구 (The experimental study on the emission characteristics of the coal gas in the condition of high pressure combustion)

  • 홍성주;이민철;김기태
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.134-134
    • /
    • 2010
  • Recently, the interest of the study about IGCC(Integrated Gasification Combined Cycle), one of New & Renewable Energy technologies, bas been increased due to the United Nations Framework Convention on Climate Change, the Low Carbon Green Growth policy, etc. Also, with this interest of IGCC, the study on the gas turbine utilizing the synthetic gas is performing actively. In the study of the gas turbine characteristic, the power performance and the combustion efficiency are mainly discussed and also the concern about the exhaust gas is being taken care of due to the increasing awareness of the environment. With this, we would like to go over the exhaust gas emission characteristic by the synthetic gas inflow in this test. In order to conduct such a test, we constructed a synthetic gas supplying system to supply the synthetic gases ($H_2$: hydrogen, $N_2$: nitrogen, CO: carbon monoxide, $CO_2$: carbon dioxide, and $H_2O$: steam) quantitatively and this combustion test was conducted by controlling the supplied synthetic gases artificially. The concentration of the exhaust gases appeared variously depending on the differences of the inflow nitrogen amount and the steam amount, whether or not the carbon dioxide flow in and so on. The results of the test can be able to be utilized for the IGCC study by understanding the exhaust gas emission characteristic of the coal gas turbine by synthetic gas composition.

  • PDF

탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구 (A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water)

  • 이중섭;이병호
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

배기계 형상 개선을 통한 THC 저감에 관한 연구 (THC Reduction through the Improvement of Exhaust System)

  • 김기성;이용호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권5호
    • /
    • pp.111-118
    • /
    • 2000
  • Experimental studies were performed to understand the flow characteristics in the exhaust system and improve the THC emission characteristics by optimizing the flow in the exhaust manifold and CCC in a SI engine. For this purpose, the flow characteristics in the exhaust systems with two types of exhaust manifolds(STD and New Type) were measured by using LDV technique under various engine condition. It was found that the flow characteristics in the New Type exhaust manifold was more desirable in a view point of heat loss reduction from the exhaust gases. The vehicle emission tests showed that the THC emission in the New Type exhaust manifold was decreased by 12%.

  • PDF

초고온융 공기예열식 열교환기의 개발 및 성능 평가 (The Development and Performance Evaluation of the Air-preheating Heat Exchanger for Ultra-high Temperature Applications)

  • 박용환
    • 한국안전학회지
    • /
    • 제14권4호
    • /
    • pp.78-84
    • /
    • 1999
  • A compact air-preheating type heat exchanger was developed and tested for the ultra-high temperature heat recovery applications. For the direct use of exhaust gases up to $1200^{\circ}C$, the heat exchanger adopted a ceramic core with high strength and low thermal expansion coefficient less than $1{\times}10^{-6}^{\circ}C^{-1}$. The ceramic core was fabricated by special extrusion and bonding techniques. To minimize thermal stresses in the core, spring-loaded sealing mechanism was designed and successfully installed. 1-pass air flow scheme was adopted for the compactness and cost-savings. The pressure test for the ceramic core showed no failure under 35 kPa and less than 3% leak under 7 kPa. Flue gas simulation system was developed to investigate the performance of the heat exchanger. The test results showed normal operations of the heat exchanger up to $1200^{\circ}C$ of exhaust gases and relatively high heat recovery efficiencies of 31~39% depending upon exhaust gas temperatures..

  • PDF

EGR 배기가스의 성층화 조건에 따른 HCCI 엔진의 연소 특성에 관한 수치해석 연구 (A Numerical Study on Combustion Characteristics of HCCI Engine with Stratification Condition of EGR Exhaust Gases)

  • 이원준;이승로;이창언
    • 한국자동차공학회논문집
    • /
    • 제19권6호
    • /
    • pp.46-52
    • /
    • 2011
  • Homogeneous charge compression ignition (HCCI) is the best concept able to provide low NOx and PM in diesel engine emissions. This new alternative combustion process is mainly controlled by chemical kinetics in comparison with the conventional combustion in internal combustion engine. However, HCCI engine's operation have an excessive rate of pressure rising during the combustion process. In this study, stratification condition of EGR exhaust gases was used to reduce the pressure rising during the combustion process in HCCI engine. Also, combustion characteristics and emissions characteristics were investigated using the detailed diesel surrogate reaction mechanism.

배기 과급 디젤기관의 흡배기 유동특성에 관한 실험적 연구 (An experimental study on the flow characteristics of intake and exhaust in turbocharged diesel engine)

  • 배원섭
    • 오토저널
    • /
    • 제13권6호
    • /
    • pp.48-56
    • /
    • 1991
  • This paper describes the experimental investigations on the pressure variations of intake and exhaust manifold and mass flow rate through exhaust turbine of turbocharged 6-cylinder diesel engine. The turbocharger of experimental diesel engine is constructed with the radial ty pe exhaust turbine and blower driven by exhaust gases. The pressure variations were measur ed by pressure transducer at the points such as turbine inlet and outlet, compressor inlet and outlet, and inlet pipe and exhaust manifolds for normal and combined charging engines with the change of engine speed. The experimental results of this study show that the mass flow rate of exhaust turbine and the variations of pressure in intake and exhaust manifold are all increased with the increase of engine speed.

  • PDF

비황분계 부취제를 혼합한 LPG 연료의 차량 배출가스 특성에 관한 연구 (A Study on the Exhaust Emissions Characteristics of LPG Vehicle using LPG Fuel with Sulfur Free Odorant)

  • 김재곤;이호길;임의순;정충섭
    • 한국대기환경학회지
    • /
    • 제30권6호
    • /
    • pp.545-554
    • /
    • 2014
  • In general, odorant was added to fuel gases, such as LPG, LNG and city gas, to prevent gas poisoning, ignition, explosion, or other accident caused by fuel gases, and to enable immediate and easy detection of fuel-gas leakage by emitting an offensive smell. This study describes a study on the exhaust emissions characteristics and fuel economy of liquefied petroleum gas (LPG) vehicle using LPG fuel with new sulfur free odorant. New sulfur free odorant was added to LPG to reduce sulfur content of the LPG. Its performance and exhaust emission were compared to those of LPG with sulfur containing odorant (EM, ethyl mercaptan). Engine performance using LPG with sulfur free odorant was similar to that with sulfur-containing odorant. Exhaust emissions from the LPG vehicle with LPG including sulfur free odorant were also similar to those with LPG including sulfur containing odorant in the FTP 75 and NEDC mode. There experimental results suggest that the sulfur free odorant may substitute for the sulfur containing odorant in LPG fuel.

EGR Cooler에 CNC 첨가시 열교환 특성에 관한 연구 (A Study on the Heat Exchange Characteristics of EGR-Cooler with CNC)

  • 이병호;이중섭;김보한;정효민;정한식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권6호
    • /
    • pp.847-853
    • /
    • 2008
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Circle fin exhaust pipes were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The designs adopted in this study were exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe Technique The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10nm), surface forces are increasingly important. Nanoparticles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^{4}$.

경유엔진용 윤활유의 성상 및 열화가 배출가스 및 후처리 장치에 미치는 영향 연구 (Effect of the Properties of Diesel Engine Oil and Aging on Exhaust Gases and DPF)

  • 김정환;김기호;이정민
    • Tribology and Lubricants
    • /
    • 제34권6호
    • /
    • pp.292-299
    • /
    • 2018
  • The objective of this research is to investigate the impact of engine oil aging on PM(Particulate Matter), exhaust gases, and DPF. It is widely known that the specification of a lubricant and its consumption in an ICE considerably influences the release of regulated harmful emissions under normal engine operating conditions. Considering DPF clogging phenomena associated with lubricant-derived soot/ash components, a simulated aging mode is designed for DPF to facilitate engine dynamometer testing. A PM/ash accumulation cycle is developed by considering real-world engine operating conditions for the increment of engine oil consumption and natural DPF regeneration for ash accumulation. The test duration for DPF aging is approximately 300 h with high- and low-SAPs engine oils. Detailed engine lubricant properties of new and aged oils are analyzed to evaluate the effect of engine oil degradation on vehicle mileage. Furthermore, physical and chemical analyses are performed using X-CT, ICP, and TGA/DSC to quantify the engine oil contribution on the PM composition. This is achieved by sampling with various filters using specially designed PM sampling equipment. Using high SAPs engine oil causes more PM/ash accumulation compared with low SAPs engine oils and this could accelerate fouling of the EGR in the engine, which results in an increase in harmful exhaust gas emissions. These test results on engine lubricants under operating conditions will assist in the establishment of regulated and unregulated toxic emissions policies and lubricant quality standards.