• Title/Summary/Keyword: Exhaust gas temperature

Search Result 738, Processing Time 0.026 seconds

A Study on the Diffuser Design of Exhaust Pipes for the Infra-Red Signature Reduction of Naval Ship (함정 적외선 신호 감소를 위한 폐기관의 디퓨져 설계에 관한 연구)

  • Yoon, Seok-Tae;Cho, Yong-Jin;Ko, Dae-Eun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.793-798
    • /
    • 2017
  • In modern naval ships, an infrared signature suppression (IRSS) system is used to reduce the metal surface temperature of the heated exhaust pipe and high-temperature exhaust gases generated from the propulsion system. Generally, the IRSS systems used in Korean naval ships consist of an eductor, mixing tube, and diffuser. The diffuser reduces the temperature of the metal surface by creating an air film due to a pressure difference between the internal gas and the external air. In this study, design variables were selected by analyzing the shapes of a diffuser designed by an advanced overseas engineering company. The characteristics of the design variables that affect the performance of the IRSS were investigated through the Taguchi experimental method. A heat flow analysis technique for IRSS systems established in previous studies was used analyze the performance of the diffuser. The performance evaluation was based on the area-averaged value of the metal surface temperature and exhaust gas temperature at the outlet of the diffuser, which are directly related to the intensity of the infrared signature. The results show that the temperature of the exhaust gas was significantly affected by changes in the diameter of the diffuser outlet, and the temperature of the diffuser's metal surface was significantly affected by changes in the number of diffuser rings.

A Optimization of the ORC for Ship's Power Generation System (해수 온도차를 이용한 선박의 ORC 발전 시스템 최적화)

  • Oh, Cheol;Song, Young-Uk
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.595-602
    • /
    • 2012
  • In this study, for the purpose of reduction of $CO_2$ gas emission and to increase recovery of waste heat from ships, the ORC (Organic Rankine Cycle) is investigated and offered for the conversion of temperature heat to electricity from waste heat energy from ships. Simulation was performed with waste heat from the exhaust gasse which is relatively high temperature and cooling sea water which is relatively low temperature from ships. Various fluid is used for simulation of the ORC system with variable temperature and flow condition and efficiency of system and output power is compared. Finally, 2,400kW output power is obtained by system optimization of the preheater and reheater utilizing waste heat form sea water cooling system.

Design and Performance Evaluation of Integral-type Hot BoP for Recovering High-temperature Exhaust Gas in 2 kW Class SOFC (2 kW급 고체산화물연료전지의 고온배기가스 폐열회수를 위한 일체형 Hot BoP의 설계 및 성능 평가)

  • Kim, Young Bae;Kim, Eun Ju;Yoon, Jonghyuk;Song, Hyoungwoon
    • Applied Chemistry for Engineering
    • /
    • v.30 no.1
    • /
    • pp.62-67
    • /
    • 2019
  • This study was focused on the design and the performance analysis of integral Hot BoP for recovering waste heat from high-temperature exhaust gas in 2 kW class solid oxide fuel cell (SOFC). The hot BoP system was consisted of a catalytic combustor, air preheater and steam generator for burning the stack exhaust gas and for recovering waste heat. In the design of the system, the maximum possible heat transfer was calculated to analyze the heat distribution processes. The detail design of the air preheater and steam generator was carried out by solving the heat transfer equation. The hot BoP was fabricated as a single unit to reduce the heat loss. The simulated stack exhaust gas which considered SOFC operation was used to the performance test. In the hot BoP performance test, the heat transfer rate and system efficiency were measured under various heat loads. The combustibility with the equivalent ratio was analyzed by measuring CO emission of the exhaust gas. As a result, the thermal efficiency of the hot BoP was about 60% based on the standard heat load of 2 kW SOFC. CO emission of the exhaust gas rapidly decreased at an equivalent ratio of 0.25 or more.

The Development and Performance Test of a Small Wood Boiler (소형 화목보일러의 개발 및 성능시험)

  • Kim, Sa-Ryang;Lee, Jong-Seok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.491-497
    • /
    • 2002
  • In the present study, a new wood boiler was developed through the performance test. The efficiency of the boiler was obtained up to about 63.7%, which is 67% higher than that of conventional wood boiler, about 38.2%. The structure of the new boiler is more complicated than the conventional boiler. The passage of combustion gas is sufficiently long to exchange heat well with heating water. Therefore, the obtained efficiency is so high, and the temperature of exhaust gas was lower than 200$^{\circ}C$, which is as low as that of light oil boiler. The composition of exhaust gas was measured, and the CO gas concentration was obtained more than 3000 ppm. So, it seems that more study is needed to lower the concentration of CO gas.

A Basic Analysis of Performance of Turbo CI Engine based on Stirling Cycle (스털링 사이클을 기본으로 하는 과급 CI 엔진의 기초 성능 분석)

  • 배종욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.76-85
    • /
    • 2000
  • Stirling cycle was actualized as so called ‘hot air engine’. It has been focused again lately as one of measures for exhaust gas emission problem, but as small power engine because of its method of heat addition. Recently marine power plants commenced to meet a stringent environmental restrictions by international convention, Marpol so that diesel engines as main and auxiliarly power plants are urged to be reformed to reduce NOx emission. Author devised a compression ignition engine as a large marine power plants combined with turbo charger based on stirling cycle, and analyzed the performance by means of basic thermodynamic calculation. Analyzed in this paper, were theoretical efficiency, mean effective pressure, required equivalence ratio, gas turbine power ratio, maximum pressure, states of turbo-charger inlet gas and exhaust gas, manifesting that the engine could be proposed as one of the future power plants of marine use.

  • PDF

A Study on Silencer Performance Assessment under Onboard Condition (선내 탑재된 소음기 성능평가 방법에 관한 연구)

  • Lee, Do-Kyung;Jin, Bong-Man;Lee, Cheul-Won;Kim, Nho-Sung;Choi, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.731-736
    • /
    • 2004
  • The exhaust noise of auxiliary engine in ships is directly transmitted to bridge wing with only distance attenuation. It is not easy to find out practical treatment to be applied between exhaust pipe and bridge wing to reduce the transmission of the exhaust noise. In general, therefore, a silencer is fitted to reduce the exhaust noise and correspondingly noise of bridge wing. The silencer should be properly designed under the consideration of the frequency component of the exhaust noise and the required performance such as noise reduction or insertion loss. In general, the gas inside the exhaust pipe flows with high temperature and speed and thus onboard test condition is more adverse than the standard atmospheric condition. In this study, the test method to evaluate silencer performance using a probe microphone is introduced.

  • PDF

An Experimental Study on the Improvement of Fuel Economy according to Coolant and Oil Temperature (냉각수 및 오일의 온도에 따른 연비향상에 관한 실험적 연구)

  • Cho, Won-Joon;Kim, Hyung-Ik;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2009
  • Recently, the internal combustion engines have focused on reducing the $CO_2$ gas in order to cope with severe regulations for fuel economy. Therefore, various new technologies have been developed. Among them, cooling system is spotlighted because it has great effect on fuel economy. In this study, we measured the friction losses of engine parts according to engine speed and oil temperature. We also obtained optimized oil temperature which has the minimum friction losses. Then, we selected optimized oil temperature range and gave informations of friction losses for each engine parts. In addition, we analyzed relationship between coolant temperature and oil temperature by using engine performance test system. From this experiment, we obtained the database for relationship between coolant temperature and oil temperature. Then, we found the optimal temperature about engine oil. We analyzed BSFC and exhaust emissions by controlling the high coolant temperture. If we controlled coolant temperature more higher, BSFC has a little difference but exhaust emissions such as THC and CO have reduced. By using these experimental results, we predicted that IC engine have more low fuel consumption and exhaust emissions by optimized cooling control strategy.

The Effect of an Aromatic Content on Exhaust Emissions in Low Temperature Diesel Combustion (저온 디젤 연소에서 연료의 방향족 성분이 배기가스에 미치는 영향)

  • Han, Man-Bae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.106-112
    • /
    • 2011
  • This study is to investigate the effect of an aromatic content in high cetane number (CN) fuels on exhaust emissions under low temperature diesel combustion, which expands the previous research about an aromatic content in low CN fuels. A 1.9L common rail direct injection diesel engine was run at 1500 rpm 2.6 bar BMEP with four fuel sets: an aromatic content of 20% (A20) or 45% (A45) with CN30, i.e. low CN fuels, and CN55, i.e. high CN fuels. Given experimental conditions, the trend of exhaust emissions in high CN fuels was inconsistent with that of low CN fuels which all produced nearly zero smoke but higher NOx for the high aromatic fuel (CN30-A45). For high CN fuels, however, the low aromatic fuel (CN55-A20) produced lower smoke than the high one (CN55-A45) while NOx was similar to each other. The cause of this discrepancy between high CN and low CN fuels is unclear whether it comes from that CN may be a dominant factor to govern exhaust emissions rather than an aromatic content or that the actual CN value of CN55-A45 is lower than CN55-A20. More decent fuel matrix should be prepared and further experiments are needed to confirm it.

An Experimental Study of the Characteristics with High Temperature Air Combustion in Jet Diffusion Flames (제트확산염의 고온공기연소특성에 관한 실험적 연구)

  • Cho, Eun-Seong;Ohno, Ken;Kobayashi, Hideaki;Chung, Suk-Ho
    • 한국연소학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.89-94
    • /
    • 2003
  • For the development of high efficiency and low emission combustion systems, high temperature air combustion technology has been tested by utilizing preheated air over 1100 K and exhaust gas recirculation. In this system, combustion air is diluted with large amount of exhaust gases ($N_2$, $CO_2$), such that the oxygen concentration is relatively low in the reaction zone, leading to low flame temperature. Since, the temperature fluctuations and sound emissions form the flame are small and flame luminosity is low, the combustion mode is expected to be flameless or mild combustion. Experiment was performed to investigate the turbulent flame structure and $NO_X$ emission characteristics in the high temperature air combustion focused on coflowing jet diffusion flames which has a fundamental structure of many practical combustion systems. The effect of turbulence has also been evaluated by installing perforated plate in the oxidizer inlet nozzle. LPG was used as a fuel. Results showed that even though $NO_X$ emission is sensitive to the combustion air temperature, the present high temperature air combustion system produce low $NO_X$ emission because it is operated in low oxygen concentration condition in excess of dilution.

  • PDF

The Combustion and Exhasut Emission Characteristics on the Low-temperature Combustion of Biodiesel Fuel in a DI Diesel Engine

  • Yoon, Seung Hyun
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.197-202
    • /
    • 2017
  • The objective of this study is to investigate the effects of low-temperature combustion (LTC) on the correlations of combustion characteristics and reduction of exhaust emissions in a small DI diesel engine with biodiesel fuel. In order to analyze the combustion, exhaust emission characteristics and distribution of nano size particles for biodiesel were investigated. In addition, to evaluate the effect of LTC on the combustion and emission characteristics, 30 and 50% of cooled-EGR rates were investigated. From these results, it revealed that the influence of LTC on the combustion characteristics showed that the ignition delay significantly increased and reduces peak heat release rate of premixed combustion by lowering reaction rate. With 50% EGR and advanced injection timing, soot and $NO_x$ emissions were simultaneously reduced.